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1. Introduction:

Under normal conditions, eventually the most prominent feature of hadronic matter is colour
confinement: quarks merely act as constituents of hadrons and qualify as auxiliary fields in the
sense that the QCD partition function is solely given in terms of states withN-ality zero. Suppos-
edly, the situation changes under extreme conditions, temperature and/or density, where quarks and
gluons are liberated. This picture is corroborated at zero density and high temperatures by means
of lattice Monte-Carlo simulations, which offer a first principle approach with controllable error
margins. The picture is clear-cut in the heavy quark limit: the hadronic phase is characterised by
a Wigner-Weyl realisation of the centre symmetry while the so-called gluon plasma phase at high
temperature relates to a spontaneously breaking of this symmetry [1, 2]. Quite recently [3, 4], it
was argued that this picture extends to the theory with dynamical quarks as well: although centre
symmetry is explicitly broken by the quark matter, centre sector transitions do still take place in the
hadronic phase [3] (see below for further details). The roleof the quarks here is to merely induce
a bias towards the trivial centre sector. Only at high temperature, the centre symmetry also breaks
spontaneously giving rise to the quark gluon plasma phase.

The properties of cold, but dense QCD matter is far less understood due to the infamous sign-
problem which prevents Monte-Carlo simulations based uponImportance Sampling. A promising
attempt to reach beyond the scope of Importance Sampling andto simulate QCD in this region of
the phase diagram resorts to Complex Langevin dynamics [5] though further studies are needed to
understand their convergence properties [6, 7]. The intuition on dense fermionic matter arises from
the free Fermi gas model: Antiperiodic boundary conditionsin (Euclidean) time direction imply
the formation of a Fermi sphere for finite chemical potential. The spin-statistics theorem [8, 9]
ties particles with half-integer spin to fermion statistics. Note, however, that the theorem requires
propagating (finite mass) particles with a positive definitenorm. The statistics ofconfinedquarks
is therefore not necessarily restricted by the spin-statistics theorem. In fact, it was shown in [10]
that in the confinement regime a certain “large” change of thegluon background field can be traded
in for a change of the quark boundary conditions [10]. Another well known example originates
from QCD perturbation theory: fermionic ghost fields inherit periodic boundary conditions from
the gluon sector and evade the spin-statistics theorem since they involve negative norm states. The
observation that quarks do not necessarily comply with anti-periodic boundary conditions, but, at
least for an even number of colours, might acquire Bose statistics has a tremendous phenomenolog-
ical impact: if, by virtue of the gluonic background, quarksdevelop a Matsubara zero mode, they
might underdo condensation if the chemical potential equals the quark mass gap. This phenomenon
has been calledFermi-Einstein condensation[11, 3, 4].

Considering confined quarks as auxiliary fields, a constraint to thermodynamical observables
emerge form the sheer fact that the sole excitations are provided by hadrons: at zero temperature,
observables are independent of the chemical potential as long as it is smaller than the hadronic
mass gap. A widespread problem is that approximate methods and QCD models fail to comply
with this physical fact. Accordingly, this problem has beencalled theSilver Blazeproblem by
Cohen in [12] reminiscent of the corresponding short story by Sir Arthur Conan Doyle, in which a
dog doing nothing provides the essential clue to solve the crime mystery.
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Figure 1: Sketch of a centre sector transition from a generic gluonic lattice configuration (left) to its centre
transform (right).

2. Centre sector transitions

Let us adopt the lattice notation to illustrate the impact ofcentre sector transitions. A generic
gluon configuration is given in terms of the linksUµ(x) ∈ SU(Nc) and is illustrated in figure 1, left
panel. A particular Polyakov line is defined by

P(~x) =
1
Nc

tr
Nc

∏
x0=1

U0(x0,~x) . (2.1)

A centre transformed configuration is generated by multiplying the time-like links of a particular
time slicet by a centre elementZn = zn 1∈ SU(Nc):

U (n)
0 (t,~x) = ZnU0(t,~x) , ∀~x, U (n)

µ (x) = Uµ(x) else. (2.2)

It is easy to see that any lattice actionA of pure Yang-Mills theory, which is built upon closed
contractible loops, is invariant under the transformation(2.2) while the Polyakov loop is not:

A[Uµ ] = A
[

U (n)
µ

]

, P
[

U (n)
µ

]

(~x) = zn P[Uµ ](~x) zn = exp

{

i
2π
Nc

n

}

, n= 1. . .Nc .

Using the spatial Polyakov loop averagep, it is straightforward to associate a so-called centre sector
to each lattice configuration:

p=
1
V ∑

~x

P(~x), C(p) = n, n :
∣

∣

∣
arg(p)−

2πn
Nc

∣

∣

∣
→ min , (2.3)

where
arg(p) = ϕ ∈ ]0,2π] , p = |p| exp{iϕ} .

It is straightforward to show that the centre transformation (2.2) shifts the centre sector byn:

C
(

p
[

Uµ
])

= m → C
(

p
[

U (n)
µ

])

= m + n .

It is the symmetry which is spanned by the transformation (2.2) which isspontaneously broken
in high temperature pure Yang-Mills theory [1, 2]. The phenomenon related to this breakdown is
deconfinement: the static quark antiquark potential is no longer linearlyrising at large distances,
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Figure 2: Right: Sector transition probabilityτ for the pure SU(2) YM-theory and the SU(2)-Higgs theory.
Left: Roberge-Weisz transformation undoing a gluonic centre sector transition.

and the gluons contribute black body radiation to the thermal energy density suggesting gluon
liberation.

How does this picture change for QCD-like theories, i.e., for gauge theories with dynamical
matter which transforms under the fundamental representation of the gauge group? Let us consider
for the momentSU(Nc) Yang-Mills equipped with a quark determinant arising from integrating
over the dynamical quark fields. The transformation (2.2) isno longer a symmetry of the action
since the quark determinant provides a bias towards the trivial centre sectorn= Nc. The question
here is whether the lattice configurations are confined to thetrivial centre sector because of this
explicit centre symmetry breaking:

C
(

p
[

Uµ
]) ?

= NC , Uµ
?

−→/ U (n)
µ , n =/ Nc (YM-theory with matter).

This question was thoroughly studied in [3] for the SU(2)-Higgs gauge theory for which the Higgs
field plays the role of the dynamical matter. To detect whether centre sector transitions do occur, we
divide the spatial lattice universe into two parts and calculate the spatially averaged Polyakov line
over each part. Let us call the resultp< andp>. Equally well, we can associate a centre sector to
each half of the lattice universe by the mappingC(p<) andC(p>). We then consider the probability
τ that both centre sectors are different, i.e.,C(p<) =/C(p>). If centre sector transitions do occur,
C(p>) andC(p<) roughly sample all sectors ranging from 1. . .Nc leaving us withτ ≈ 1−1/Nc.
If, on the other hand, centre sector transitions are prohibited, we would haveτ = 0. The so-called
“tunnelling coefficient”τ is shown in figure 2, right panel, for the pure SU(2) Yang-Mills theory as
function of the Wilson-β parameter. Whileτ is close to 1/2 at low temperatures, it rapidly drops
for largeβ values, which correspond to the gluon plasma phase. Also shown are the findings for
the SU(2) Higgs theory: note thatτ is still close to 1/2 at smallβ indicating that centre sector
transitions do frequently occur. It is only above a certain critical value when these transitions cease
to exist due to a spontaneous breaking of the centre symmetrybesides of its explicit breaking. Also
note that the criticalβ value for deconfinement is smaller for the Higgs theory than for the pure
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YM-theory. This shows that the deconfinement critical temperature is smaller for the Highs theory,
which is expected due to the matter effects.

Let us now include dynamical quark matterq(x) which is subjected to a centre transformed
gluon background fieldU (n)

µ (2.2) (see figure 2, right panel). The matter gluon interaction is as-
sumed to be of next-to-nearest-neighbour type: ¯q(x)Uµ (x)q(x+µ). It turns out [10] that the centre
transformation of the gluon fields can be reversed by transforming the quarks fields via

q(n)(x) = Zn q(x) for x0 > t, q(n)(x) = q(x) else. (2.4)

This almost appears to be just a change of variables and therefore an invariance of the partition
function. Note, however, that with the transformation (2.4) the boundary conditions of the quarks
change from antiperiodic toZn-periodic:

q(x01/T,~x) = (−1) Zn q(x0,~x)

Let us DetAP denote the quark determinant with antiperiodic boundary conditions and let Det(n)
represent the determinant withZn-periodic boundary conditions. Since the partition function of
QCD (or the QCD-like theory) is a gluonic ensemble average over all centre sectors, the partition
function can be written as

∫

DUµ DetAP[Uµ ] exp{−SYM [Uµ ]} =
∫

DU (Nc)
µ

(

∑
n

Det(n)
[

U (Nc)
µ ]

)

exp
{

−SYM [U (Nc)
µ ]

}

.

(2.5)
Note that for an even number of colours, there is the centre elementZNc/2 = −1. Hence, there is a
particular centre sector, which gives rise toperiodicboundary conditions for the quark determinant
when the gluon fields are mapped to the trivial sector by meansof the transformation (2.4). In
zeroth order perturbation theory, i.e., forU (Nc)

µ = 1, the right hand side of (2.5) given rise to a
centre-symmetric Fermi gas model. ForNc even, it was shown in [10] that when the chemical
potentialµ approaches the mass gapm, the baryon densityρ is largely determined by the centre
sectorn= Nc/2 alone:

ρ ≈
∫

m
dE

−1

e[E−µ ]/T −1
, (Nc even, confinement phase). (2.6)

whereE can be interpreted as the one-particle energy of the (modified) Fermi gas model. Notably,
this contribution is singular forµ → m, and suggests an instability due to condensation quite analo-
gously to Bose-Einstein condensation. Since the degrees offreedom which condense are fermions
which are exposed to a non-trivial centre background field, this has been calledFermi-Einstein
condensation(FEC). It is important to note that FEC can only occur in the confined phase: in this
phase, transitions from the trivial centre sectorn= Nc to the sector withn= Nc/2 do occur. Under
extreme conditions, this is no longer the case: the sector transitions cease to exist, and only the triv-
ial centre sector background is attained. In this case, the above model coincides with the standard
Fermi gas model displaying Fermi statistics:

ρ ≈
∫

m
dE

1

e[E−µ ]/T +1
, (high temperature deconfinement phase). (2.7)
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The question arises whether FEC also takes place in QCD-liketheories with anodd numbers of
colours and, most importantly, in QCD. To gain first insights, the centre symmetric quark model,
i.e., zeroth order perturbation theory, has been generalised to the SU(3) gauge group [3]. The phase
diagram can be analytically calculated in this model. It wasfound that, for low temperature and
intermediate values of the chemical potential, a phase withan excess of baryon density does occur
if the spatial volume is small enough, i.e., if the system is under pressure [3].

3. Lessons from the Schwinger model

The Schwinger model [13], i.e., QED in two dimensions on a space-time torus, is an ideal
testbed for tracing out new ideas since many computations can be done analytically. Here, we
will study the phenomenology of the centre-sector transitions in this model for a non-vanishing
chemical potential.

The model with massless fermions was exactly solved in Hamiltonian formalism on the line
in [14, 15, 16] and onS1 in [17, 18]. The model on the torus has been studied in [19] andin particu-
lar the temperature dependence of the chiral condensate, Wilson loop correlators and Polyakov line
correlators have been determined [20, 21, 22]. In turns out that chiral symmetry is spontaneously
broken and that only states with a vanishing net baryon number appear in the spectrum. The latter
observation is key and implies that the baryon density oughtto vanish even in the case of non-
vanishing values of the chemical potential. Non-vanishingvalues of the fermion chemical poten-
tial have been firstly considered in [23, 24], and it was found, indeed, that the full non-perturbative
partition function is independent of the chemical potential.

The gauge potential can be written as [20]

A0 =
2π
β

h0+∂0λ −∂1φ , A1 =
2π
L

h1+∂1λ +∂0φ (3.1)

where the periodic functionsλ andφ integrate to zero. The constant toron fieldsh0,1 ∈ [0,1[ label
the U(1) centre sectors of the model. This can be easily seen from the fact that the shifth0 → h0+α
transforms the Polyakov line by a U(1) centre elementP(x) → exp{i2π α} P(x). The partition
function factorise into a photonic part and into the centre sector average of the fermion determinant:

Z(T,L,µ) = (2π)2

√

det′(−△)

det′(−△+m2
γ)

∫ 1

0
dh0 dh1 det(i /∂ h,µ) , (3.2)

wheremγ is a dynamically generated photon mass, andL is the spatial extent of the torus.Assuming
a frozen centre sector, i.e., a fixed value forh0, would lead to aSilver Blazeproblem since the
baryon densityρB is non-vanishing in this case:

ρB
L→∞
−→

1
π

∫ ∞

0
dp

{

z

eβ(p−µ)+z
−

z∗

eβ(p+µ)+z∗

}

, z= exp{−2π i h0}.

Note also that for the particular choiceh0 = 1/2, we findz= −1 implying that the one-particle
distribution functions are of Bose type. Thus, freezing thecentre sector yields the wrong physics.
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On the other hand, the centre sector average, i.e., the integration over the toron fieldh0, yields a
result which is independent ofµ [3], i.e.,

Z(T,L,µ) =

√

V
2

1
√

det′(−△+m2
γ)

,

and, thus, solves the Schwinger-Blaze problem in the Schwinger model.
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