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Quark and gluon confinement from an effective model of Yang-Mills theory Kei-Ichi Kondo

1. Introduction

For quark confinement, the most well known and natural criterion is the Wilson criterion:
the area law for the Wilson loop average, which means a linear static potential between a pair of
quark and antiquark. The Wilson criterion for quark confinement is a gauge-invariant statement,
which is independent from the gauge fixing chosen in quantizing the Yang-Mills theory. For gluon
confinement, such criterion is not yet known as far as | know.

For color confinement, there are at least two known approaches of Kugo—OjimalKand
Gribov—Zwanziger (GZ)J. In these approaches, the criteria for color confinement are attributed
to the deep infrared behavior of specific Green functions. However, the Green functions depend on
the gauge. Therefore, color confinement has been studied so far gauge by gauge, e.g., the Lorenz
gauge, Coulomb gauge, the maximally Abelian (MA) gauge, etc. In the Lorenz-Landau gauge,
especially, the KO criterion for color confinement is reduced to the infrared behavior of the ghost
propagator]].

Recent investigations show that gloun and ghost propagators in the most common Landau
gauge are classified into two types according to their behaviors in the infrared region:

e scaling solution (IR suppressed gluon propagator and enhanced ghost propagator)
Schwinger-Dyson equation (SDE) [von Smekal, Hauck & Alkofer,1997,18808.[

e decoupling solution (IR finite gluon propagator and tree-like ghost propagator)
SDE [Boucaud et al.,2008]] [Aguilar,Binosi, & Papavassiliou,2008]]...
Lattice simulations [Bogolubsky et al., 20@][[Cucchieri & Mendes, 2004]]] [Sternbeck,
von Smekal, Leinweber, Williams, 2008]]...

The scaling solution fulfills the KO/GZ criterion, while this is not the case for the decoupling
solution. The decoupling solution is supported by recent results of numerical simulations on the
lattice with very large volume®][[7, [). It is still under active debate to discriminate two different
types of propagators.

No one has found a gauge-independent criterion for color confinement! Therefore, quark
confinement in the Wilsonian sense cannot be derived at present as a special case of these color
confinement scenarios. In fact, the relationship between quark confinement and the Green functions
in the infrared regime is not yet clarified.

Nevertheless, it has been shown that both scaling and decoupling solutions exhibit quark con-
finement and gluon confinement:

e quark confinement, i.e. the vanishing of the Polyakov loop average at finite température
for 0 < T < T¢ below the critical temperaturg.
functional renormalization group (FRG) [Marhauser & Pawlowski, 20| [Braun, Gies
and Pawlowski, 2010I[]] [Kondo, 2010 [[27]]

e gluon confinement, i.e., violation of reflection positivity was demonstrated

for scaling solutions: SDE [Alkofer and von Smekal, 20@] [
for decoupling solutions: SDE,FRG [Fischer, Maas and Pawlowski, 289 pttice simu-
lations [Bowman et al., 2007]
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The purpose of this talk is to discuss how quark confinement and gluon confinement are related to
the infrared behavior of the gluon propagator in the Lorentz covariant gauge baggg.on [

(1) We derive a novel low-energy effective modelSif(2) Yang-Mills theory without fixing the
original gauge symmetry. The resulting effective gluon propagator belongs to the Gribov-
Stingl type,irrespective of the gauge choice

= _ dotdhp?
Dae(P) = Co+C1p?+Cop?’

(2) In MA gauge, we show that the model exhibits both quark confinement and gluon confine-
ment simultaneously in the following sense:

e quark confinement: The Wilson loop average satisfies the area law.
e gluon confinement: A Schwinger function (Euclidean Green'’s functions) for the effective
gluon propagator violates the reflection positivity.

(3) However, for the effective gluon propagator to agree exactly with the Gribov-Stingl form
Co # 0, one must include either (a) a gauge-invariant nonlocal “mass term” or (b) a “mass
term” that breaks nilpotency of the BRST symmetry. Otherwise, we bawe0.

(4) We argue that quark and gluon confinement can be obtained even in the absence of such a
mass term.

In the follows, we consider only th8U(2) gauge group(I8 [I9 20 and the extension to
SU(N) based onZ]] will be given elsewhere.

2. Reformulating the Yang-Mills theory in terms of new variables

(Step 1) We transform the original variable to the new variablen,c,, Z;:
old variables w7;'(x) = new variables (n® (x),c,(x), Z;,’(x)),
according to[I8 [19 20

n(x) =mxTa (A=123)

Cu(X) = Fu(X) - N(x),

Zu(¥) =ig~*Dyul«/]n(x),n(x)], (2.1)
wheren(x) is the Lie-algebrau(2)-valued field with a unit length, i.en®(x)n*(x) = 1. The so-
called color direction fieldh is obtained in advance as a functional of the original variajley
solving the reduction conditiofiLf], e.g.,[n(x), Dy [</]Dy [/ |n(x)] = 0.

If the original Yang-Mills field.7, (x) = 7;'(x) Ta is decomposed into two pieces?, (x) =
Yu(X) + Zu(x), then the new variabl¢), = .7, — 2, is a Lie-algebrau(2)-valued fields?}, (x) =
78X Ta (A=1,2,3) given by

Yu(%) = cu(X)N(X) +ig~2N(x), 3uN(X)]. (2.2)

The variables/, (x) satisfy the properties:
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(i) 7, hasthe same gauge transformation as the originaldigld.e., 7, (X) — Q(X) 7, (X)Q(x) "+
ig71Q(x)3,Q(x)" and hence its field strengti,y [¥] := 0y % — 0y ¥y — i9[ ¥y, 4] trans-
forms in the adjoint way:%,, [#](x) — Q(X).Zuw[#]Q(X)T,

(i) Fuv[7]is proportional tan, i.e., [ 7](X) := N(X)Gpy (X).

ConsequentlyG,, = n-.#,,[¥] is gauge-invariant, since the fiefds constructed so that it trans-
forms asn(x) — Q(x)N(x)Q(x)T. RemarkablyG,, has the same form as the 't Hooft-Polyakov
tensor for magnetic monopole:

(Step 1') In order to obtain the dual effective theory for examining the dual superconductivity
[@5], we introduce agauge-invariantantisymmetric tensor fiel§*B),, of rank 2 by inserting a
unity into the path-integralb2, 23 24:

1= [ 7Bexp[ - [dxA (‘B — (an-Fu[¥] - Br-iglZu 2DV, (24)

wherex is the Hodge dual operation. Here (too many) parametars are introduced to see
effects of each term. Putting= 0 is a simple way of reproducing the original theory without
the antisymmetric tensor field. WhenB =y 1= G anda =0, indeed,(*B),y is regarded as
a collective field for the composite operatorig[.Z,, Zy] with the propagato6 obtainable in a
self-consistent wayZg| according to the Wilsonian renormalization group (REJ[

Then the Euclidean Yang-Mills Lagrangiafim [/ ] = %(ff’* [«/])? is rewritten and modified

v
into
LmV, 2, B
1+ ya? V.. ya . 1 1+ yB? .
i G;Zw + Z( B);Zw - 7( B)uvGpv + E%“AQﬁE%VB‘F T(lg[‘%uv 2])%, (2.5)

where we have defined

HE ::SA85[JV +(2+ VGB)QSABCHCGMV - VBQSABCnC(*B)uw
8=~ (D[]0, (4], 26)

with the covariant derivativ®,, in the adjoint representation withy, := ¥,CTc, (Tc)"® = ifACE:
DAB :— 9, 3*B — g fABCYC — [9,1—ig ;] ",

3. Deriving an effective model by eliminating high-energy modes

(Step2’) We identify.2}, with the “high-energy” mode in the rang® € [M2,A?] and proceed
to integrate out the “high-energy” mode®,,. HereM is the infrared (IR) cutoff and\ is the
ultraviolet (UV) cutoff as the initial value for the Wilsonian RG.

In the derivation of our effective model, we neglect quartic self-interactions anng.e.,
(ig[ 2y, Zv])%. However, we can take into account an effect coming from the quartic interaction,
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which influences our effective model. In fact, it is shol@@ [35 that the quartic gluon interaction
(i9] 2y, 2v])? among2, gluons can induce a contribution to the mass term

1
EMZ%“%H 3.1

through a gauge-invariant vacuum condensation of “mass dimension-2" (the BRST-invariant ver-
sion was proposed i8[]),

<‘%VB<X>%VB(X)> # 0, (3.2)

which leads to the mass terfq) with M2 ~ ( 2.3(x) 2,2(x)) up to a numerical factor. This
result is easily understood by a Hartree-Fock argument. This effect is included in the heat kernel
calculation through the infrared regularizati@3[[45].

The correlation functions for new variables have been computed on a lattice by numerical
simulations using the Monte-Carlo method@8] based on38 37. This justifies the identification
of Z}, as the high-energy mode negligible in the low-energy regime bblow1.2GeV. Here the
Landau gaug@* <7, = 0 was adopted, since we need to fix the gauge to obtain the propagator or
correlation functions?

In these approximations, we can integrate @t by the Gaussian integration and obtain a
gauge-invarianiow-energy effective atctioﬁ?)}f,I [7,B]

1+ ya? Y . ya . 1
st v,B = / [ G5, + 7 B)5s — TR B)poepa} +5In detQ}5 — IndetS*®,  (3.3)
where [ = [d*, the functional logarithmic determinaéﬂn dett pg comes from integrating out
the 2 field, and the last term comes from the FP-like determinant t@8hdssociated with the
reduction conditionId. We can obtain (see a subsequent padBffor details of calculations)

*lndetQAB Indets*® = /g nlVI22 [6620 %{(2+V‘7B)Gpo_yﬁ(*8)pa}2

+/ 2|v|26 L (0, {(2+ yaB)Gpo — yB('B)po})2 + 0(0*/MY). (3.4)

The gauge fixing is unnecessary in this calculation. Indeed, the resulting effective BcBomith
(39 is manifestly gauge-invariant. This is one of main results. The correcBR@ction at the
one-loop leveB(g) := u%ﬁ‘) = —byg®+0(¢®), by = Z/(4m)? is reproduced in a gauge-invariant
way whenya 8 = 0 which follows from e.g.a = 0 (a choice mentioned above) pe= 0 (in the
case of ndy,, field).

Thus we obtain the following effective acti(ﬁf,f,I [G, B] up to terms quadratic in the fields,

<l G, B :%(G, [fo+ fla} G)+ %(*B, [do + d14]*B) + (G, [ho+ hla} “B) +o<%), (3.5)

1in the MA gauge, it has been shown in an analytical W&§ that the off-diagonal gluon mass generation can
follow from the off-diagonal gluon-ghost condensation of mass dimensi(ng?ZZ’> ,O0 = %Af,A“a+ aCaC? which has
been proposed if8[).
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where

g°In {z 2 9?1 yp?
do = d = =z
o =Y (47_[)2 VZ,B, 1 (47_[)2 2 3 5

2|n“—2—62 2 2 1 (2 2
_ > 9Ny (2+yap) 9 (2+yaB)

fo=1+yo" =2 3 S P T VR S
ho = — a+gzln,{j|222(2+ ap)yp, b= &1 @+yaBlyp (3.6)
0 — y (47_[)2 y yp, 1= (47_[)2 M2 3 . .

We will see that the exact Gribov-Stingl form of the gluon propagator is obtained, if one
introduces a gauge-invariant, but nonlocal “mass term”:

SRIG = 5 (G.PaG), 37)
or, if one introduces a non gauge-invariant mass term
SPPIG] = 5 (anfa). 38)
for the gauge fielé related to the field strengt@ by
G=da (6a=0). (3.9)

Even after taking specific gauges, the BRST invariance is also broken by including this mass term.
However, we can modify the BRST such that the modified BRST is a symmetry of the Yang-Mills
theory with the mass term at the cost of nilpotency. In other words, the requirement of nilpotency
of the BRST excludes such a gluon mass term.

4. The Gribov-Stingl form for gluon propagator

We can integrate ouB by the Gaussian integration. Then we obtain the effective action in

t fG:
erms o 1

(Gl =5 (6. 7540) 4.1)

If we include the mass ter8(J), the inverse effective propagators for the field strer@gtieads

Dos =[MPA™ + fo+ f14] — [do+ chA] *[ho + AT
[do—i—dlA][mZA*l—l— fo+ f1A] — [h0—|— h1A]2

= 4.2
do+diA ( )
Then we obtain the effective propagatay,! for the fielda defined byG = da
_ A _1_ Co+CiA+Co?
P66=D"%a, Zaa = T dordid (4.3)
where
Co=mPdop, C1=dofo—h3+mPd;, cp=dofy+ fodi — 2hohy. (4.4)
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We observe that the effective gluon propagatag has the Gribov-Stingl form wheay # O:

1+d1p2

7P = ot o

(4.5)

Thus, we have found that the effective propagator has the Gribov-Sting! f[ofin Note thatd,
comes from the induced kinetic term for tBefield which was introduced in the beginning as an
auxiliary field without the kinetic term.

5. Converting the Wilson loop to the surface-integral

(Step 3) We use a non-Abelian Stokes theor@B P8, 27 to rewrite a non-Abelian Wilson
loop operator

We[or] =tr {9 exp{ig 7{: dxﬂ%(x)H Jtr(1), (5.1)

into the area-integral over the surfa¢oz = C):
1 _
welor) = [aus(@rexpliog [ | aus(e) = e 52

wheredy is an invariant measure @J(2) normalized ag du(éx) = 1, & € SU(2). In the two-
form G := 1G,, (x)dx#* AdX’, G, agrees with the field strengE.@) under the identification of
the color fieldn(x) with a normalized traceless field (See alBd|}

n(x) := &(03/2)&]. (5.3)
Using the vorticity tenso®s with the support on the surfagewhose boundary is the lodgx
oL (x) = /z 25 (x(0))3° (x— X(0)), (5.4)
the surface integral is cast into the volume integral and the Wilson loop operator is rewritten as
weler] = [ d(E)expligy©@n.6)|. (©@n.6)= [P NGMK. (65
where(-,-) is theL? inner product for two differential forms.

6. Calculating the Wilson loop average to show area law: quark confinement

(Step 4) We proceed to evaluate the Wilson loop aveXsl(@) = (We[.<])ym by using the
effective actiorSS [G,B], i.e., We[7])ym =~ (We[«7])Ell, with the aid of D).

We demonstrate that the simplest way to obtain the area law is to use the low-energy effective
actionSE! [G, B] retained up to terms quadratic and bilineaGiandB.

In what follows, we take the unitary-like gauge

MA(X) = On3, (6.1)
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which reproduces the same effect as taking the MA gdd@gini the original Yang-Mills theory.

In this gauge,%VHA(x) reduces to the off-diagonal componéét(x) (a= 1,2), while 7/“A(x) reduces

to the diagonal oné3 (x) = ay(x), i.e., Z1"(X) = F2(X)daa, ¥ (X) = 3(X)3a3 = Cu(X) Opa. The

gauge [6.7) forces the color field at each spacetime point to take the same direction by gauge
rotations. Hence the fiel@ given by P.3),

contains singularities (of hedgehog type) similar to the Dirac magnetic monopole after taking the
gaugelG.]). If we do not fix the gauge, such a contribution is contained also in theigpai -
[0un,0yn] to make a gauge-invariant combinati®y,, see [Bg [37]. Consequently, the Bianchi
identity for G is violated,

0xG=+dG=x*xddc++dH=0xH #£0, (6.3)

even ifddc= 0. Hered denotes the exterior differential ardthe codifferential. There is no
well-defined one-forni such thatH = dh. Thus we obtain a nontrivial gauge-invariant magnetic
monopole current defined by

=0x*G. (6.4)

By integrating out theB field, we obtain the effective actio@f{,I [G]. Then we find that the
effective propagatof,, has the Gribov-Stingl form:

. 1+d1p2
- Co+C1p®+Cop*’

@GG( p) = pzéaa( p), @aa( p) (6.5)

2 2 2
whereco=n?, ¢c; = 1+ %(fﬁ% Co= (491?# [(2+yaB)?+(1+ya?)yB2+2(2+yaB)yaB]/3,
2 2
andd; = %(f’w% The precise values of the parametetry, a, 3 andM are to be determined
by the functional RGZJ| following [[IZ], which is a subject of future study.

In the unitary-like gaugddJ) the Wilson loop operator is reduced to
1 1
We[F] =exp [lg/ G] =exp [lg(@z,G)] : (6.6)
2 Js:95=C 2
Then the Wilson loop averad®(C) is evaluated by integrating o@ = da:
1
W(C) =exp [—892(92, P669s) + ] , (6.7)

whereZgg = A Zaaand its Fourier transform obeyzss(p) = p2Zaa(p).

For concreteness, we choo®g for a planar surface bounded by a rectangular IGopith
side lengthsI andR in the x3 — x4 plane. Then we find that the Wilson loop average has the area
law for largeRandT:

W(C) ~ expg—0RT], (6.8)
with the string tension given by the formula:
1 dpdpy ~
2 R pz@GG(pl, p2,0,0) >0, (6.9)

8 e (22
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Figure 1: (Left panel) The propagator of the diagonal gluon in MA gauge as a function of the momentum
p = v/ p?. (Right panel) The dressing function of the diagonal gluon in MA gauge, or the integrand of the

formula for the string tensiond$zl+|2‘;‘lp‘4 as a function op = \/@
where the momentum integration is restricted to the two-dimensional momentum space (the di-
mensional reduction by twdl]) and is cutoff atM which is the upper limit of the low-energy
effective model being meaningful. A positive and finite string tensicn @ < o follows from
the condition of no real poles in the effective gluon propagﬁ@g(p) in the Euclidean region,
0 < Zaa(p) = P?Zad(p) < , which is connected to the gluon confinement shown below. This is
another main result.

According to numerical simulations in MA gaud&? [43 [44], the diagonal gluon propagator
is well fitted to the form[E.5), see Fig. 1: e.g. ] gives co = 0.064(2)GeV?, ¢; = 0.1259),
c2 =0.197(9)GeV 2, d; = 0.13(1)GeV 2, andM ~ 0.97GeV, whereM is the mass of off-diagonal
gluons obtained in the MA gauge. This valueMfis a little bit smaller than the values of other
groupsf2 [43. This indeed leads to a good estimate for the string tension

o ~ (0.5GeV)?, (6.10)

according to&.9) for a(u) = g?(u)/(4m) ~ 1.0 atu = M. The next task is to study how the
results are sensitive to the deep infrared behavior of the diagonal gluon prop&g8tengd the
actual value oM for the off-diagonal gluon propagator.

The Gribov-Stingl form is obtained only whep # 0 (i.e.,m# 0) andd; # 0 (Byy is included).
Even in the limitm? — 0 (co — 0), the area law can survive according B9, provided that

Jcc(p) remains positive and finiteZgg(p) — Cllﬂlzfz while Za4(p) behaves unexpectedly as

@aa( p) — pz(l%gpz) Hence, we argue that it does not matter to quark confinement whatadr
ormz=0.

7. Calculating the Schwinger function to show positivity violation: gluon
confinement

(Step5) The positivity violation is examined. We consider the Schwinger function defined by

. o0 . ~
At) = /dsxe_'p'xg(hx)\p:o =/ dzs):ép“t-@(p: 0, pa). (7.1)
The Euclidean propagaté?(p) in momentum space has a spectral representation,
S(p) = /°°o|;<2 ) o At = /dep(KZ)e‘Kt >0 (7.2)
0 p?+ K2 0 ' '
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Schwi nger function 1 & Schui nger function 0 Schui nger function 2

0.015
3 0.01

0.005

Figure 2: The Schwinger functiod(t) calculated from the diagonal gluon propagator of the Gribov-Stingl
type obtained in MA gauge (left panel)x0t < 5, (middle panel) G&< t < 12, (right panel) 5< t < 15.

If A(t) is found to be non-positivga(k?) cannot be a positive spectral function. The corresponding
states cannot appear in the physical particle spectrum: they are confined.
1) For the free massive propagatf(t) is positive for anyt,

S(o)— L _ [ 9Pagpe 1 1
_@(p)_pz_l_mZ:>A(t)_/w o e =m0 (7.3)

Therefore, we find no positivity violation as expected. This case correspomig ) = (k2 —
n?) = 2£&(k —m) > 0.
2) We consider the propagator of the Gribov-Stingl type in Euclidean space,

~ do+d1p2

2(p) = >0 C1,C,dg, 0y € R. 7.4
(p) CO+C1p2+C2p47 p==0, Cop,Cq,Cp,00,01 ( )

In the case oty = 0, there is no positivity violation, as far @s/c; > 0. In the case o€; # 0,
@aa( p) has a pair of complex conjugate polepat= zandp? = z*, z:= X+iy, X:= —C1/(2¢p),y:=

\/Co/Cz — (c1/(2c2))?. We find that the Schwinger functiai(t) ;= [ 2dPt &, (p= 0, py) is

—0 271
oscillatory int and is negative over finite intervals in the Euclidean ttme0 (See Fig. 2):

1
2c5|Z3/2sin(2¢)

A(t) e U142 [cogt |z Y2 cosp — @) + du|Z) cost|Z Y2 cosp + ¢)],  (7.5)

wherez= |z|e?? with |z| = (co/c2)*?, cog2¢) = —1/c2/(4coCz), and sirf2¢) = 1 /1 — c2/(4coCa).
Therefore, the reflection positivity is violated for the gluon propag@d),as long as

o

irrespective ofl;. Whency = 0 (orm=0),

t 1 Co

At = ——— — = [2(1_ 9y )ete (7.7)
N 2ct 21\ ¢ C2 ! ' .

Hence, the special casg = 0 also violates the positivity, if; > 0 andc, > 0. Thus the diagonal
gluon in the MA gauge can be confined.

10
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8. Summary

In summary, we have discussed how to obtain a low-energy effective model &Ut®
Yang-Mills theory without fixing the original gauge symmetry. It is remarkable that the effective
model respects th8U(2) gauge invariance of the original Yang-Mills theory, which allows one to
take any gauge fixing in computing physical quantities of interest in the low-energy region. The
resulting effective gluon propagator belongs to the Gribov-Stingl type, irrespective of the gauge
choice This is a universal aspect obtained independently of the choice of gauge fixing condition.

In MA gauge, especially, we have demonstrated that the model exhibits both quark confine-
ment and gluon confinement simultaneously in the sense that the Wilson loop average satisfies the
area law (i.e., the linear quark-antiquark potential) and that the Schwinger function violates re-
flection positivity. Moreover, we have given a formula for the string tension based on the gluon
propagator of the gauge-invariant field strenGih . It gives a good estimate for the string tension.

However, for the effective gluon propagator to agree exactly with the Gribov-Stingl form, we
need to introduce (i) a gauge-invariant, but nonlocal mass term or (ii) a mass term that breaks
nilpotency of the BRST symmetry. Otherwise, we haye= 0. We argued that both quark and
gluon confinement can be obtained even in the absence of such a massterth, More results
and full details will be given in a subsequent pa& |
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