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One of the main open questions in physics is the understgrafithe internal structure of the
strongly interacting particles, or hadrons. Itis still atténge to describe consistently the dynam-
ics of scattering processes and hadronic structure at rtedenergy scales. The study of Parton
Distribution Functions (PDFs) sets a connection betweerptirturbative and non-perturbative
worlds, through the following scheme: one builds modelssisiant with QCD in a moderate
energy range, PDFs are evaluated in these models, andy fithedl scale dependence of these
distributions is studied. In these proceedings, we rethgtstandard procedure to match non-
perturbative models to perturbative QCD, using experimeatdta. The strong coupling constant
plays a central role in the QCD evolution of parton densiti#e will extend this procedure with
a non-perturbative generalization of the QCD running cimgpdnd use this new development to
understand why perturbative treatments are working resdggmwell in the context of hadronic
models. Vice versa, this new procedure broadens the waysbfzng the freezing of the running
coupling constant.
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1. Parton Distributions Scales

The internal structure of the strongly interacting paetictemains veiled. It is still a challenge
to describe consistently the dynamics of scattering pseeand hadronic structure at moderate
energy scales. Because at such a scale a hadronic reptiesetatiees over the partonic description,
it is calledthe hadronic scaleThe hadronic scale is peculiar to each hadronic represamta

A way of connecting the low and high-energy worlds has tradilly been through the study
of Parton Distribution Functions (PDFs): Deep Inelastiogasses are such that they enable us to
look with a good resolution inside the hadron and allow ustmlve the very short distances, i.e.
small configurations of quarks and gluons. At short distantiés part of the process is described
through perturbative QCD. A resolution of such short distanis obtained with the help of non-
strongly interacting probes. Such a probe, typically a phots provided by hard reactions. In
that scheme, the PDFs reflect how the target reacts to the poolhow the quarks and gluons are
distributed inside the target. The insight into the streestof hadrons is reached at that stage: the
large virtuality of the photonQ?, involved in such processes allows for the factorizatiothefhard
(perturbative) and soft (non-perturbative) contribusiagmtheir amplitudes. Hence, the virtuality of
the photon introduces another scale, tlee, factorization scale

The evaluation of PDFs is guided by a standard scheme, set vgduable literature of the
90s [1-3]. This scheme runs in 3 main steps. First, we eithiédd Inodels consistent with QCD
in a moderate energy range, typically the hadronic scalejeouse effective theories of QCD for
the description of hadrons at the same energy range. Sele@i; are evaluated in these models,
giving a description of the Bjorker-dependence of the distribution. Third, the scale deperedenc
of these distributions is studied. The last step allows togothe moderate energy description of
hadrons to the factorization scale, thanks to the QCD ewemlwgquations. In these proceedings,
we will focus on this third step: how to match non-pertunzatinodels to perturbative QCD, using
experimental data.

Besides, it is worth mentioning that, since the hadronic e®dre characterized by their in-
gredients and degrees of freedom, they may also includeotieepts of chiral symmetry breaking
(e.g. NJL) or a description of confinement (e.g. MIT bag mpdi either cases, those concepts
are related to yet another momentum scale (respectivelgtinal symmetry breaking scaknd
the confinement sca)ehat is peculiar to the model.

2. TheHadronic Scale

The hadronic scale is defined at a point where the partonitenbof the model, defined
through the second moment of the parton distribution, issdmd-or instance, the CTEQ parame-
terization gives

{(w+0d)(Q*=10GeV))) ,=036 , (2.1)

with gy the valence quark distributions and witty,(Q?))n = fo dxX¥1qy(x,Q?). In the extreme

case, i.e., when we assume that the partons are pure valaadesgwe evolve downward the
second moment until

(W+d)(HE))y =1 2.2)

IMSTW gives a similar result.
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The hadronic scale is found to p& ~ 0.1 Ge\~.

This standard procedure to fix the hadronic (non-perturbatcale pushes perturbative QCD
to its limit. In effect, the hadronic scale turns out to be déa hundred MeV, where the strong
coupling constant has already started approaching itsdwapdle. As it will be shown hereafter,
the N"LO evolution converges very fast, what justifies the pewtivie approach. Consequently,
the behavior of the strong coupling constant plays a cemtalin the QCD evolution of parton
densities. Here we extend the standard procedure with theedurbative generalization of the
QCD running coupling [4].

3. The Running Coupling Constant

In these proceedings, we call perturbative evolution themaalization group equations (RGE)
that follow from an analysis of the theory as a perturbatixea@sion in Feynman diagrams with
m loops leading to logarithmic corrections of the ratio 'morhen invariant to mass scale’, i.e.
(orslog(Pz/Mz))m. At NMLO the scale dependence of the coupling constant is given by

das(Q?)/4m LD g\ k2
diin Q%) Bumio (Qs) —kZO <E‘[) k

We show here the solution ta=1, i.e., NLO

2 38
=11 — Zn =102 — —n
BO 3 fo Bl 3 f ;
wheren; stands for the number of effectively massless quark flavatisBadenote the coefficients
of the usual four-dimensionallS beta function of QCD. The evolution equations for the coupli

constant can be integrated out exactly leading to

1
2 2 _
In(Q //\LO) - BOaLo/47T )
2 /A2 _ 1 by Onio by Onio

whereby = Bx/Bo. These equations, except the first, do not admit closed fototisn for the
coupling constant, and we have solved them numerically. Ndgvgheir solution, for the same
value of A = 250 MeV, in Fig. 1.

We see in Fig. 1 (left) that the NLO and NNLO solutions agregegwell even at very low
values ofQ? and in Fig. 1 (right) that they agree very well if we changewhleie ofA for the NNLO
slightly, confirming the fast convergence of the expansidris analysis concludes, that even close
to the Landau pole, the convergence of the perturbativerskpa is quite rapid, specially if we use
a different value of\ to describe the different orders, a feature which comesrom the fitting
procedures.This fast convergence ensures that perturbative evolu#mnstill be used at rather
low scalesHowever, when entering the non-perturbative regime, atierhanisms take place that
influence the QCD evolution. That is what we will call here fpmrturbative evolution.
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Figure 1: The running of the coupling constant. Left: The short dastwde corresponds to the LO
solution, the medium dashed curve to NLO solution and thg kashed curve to the NNLO solutighE&
250 MeV). Right: The solid curve represents the NLO solutidtih A = 250 MeV, while the long dashed
curve the NNLO solution with a value &t = 235 MeV.

As for the other mechanisms entering into play at low enexgywill consider here, in a first qual-
itative approach, the consequences of a dynamical gluos nf&s8] on the framework of QCD
evolution. Even though the gluon is massless at the levéleofundamental QCD Lagrangian, and
remains massless to all order in perturbation theory, thepssturbative QCD dynamics gener-
ate an effective, momentum-dependent mass, without afetiie localSU(3). invariance, which
remains intact. At the level of the Schwinger-Dyson equetithe generation of such a mass is
associated with the existenceiofrared finite solutiongor the gluon propagator. Such solutions
may be fitted by “massive” propagators of the fatm*(Q?) = Q? + nm?(Q?); m?(Q?) can be un-
derstood as a constituent gluon mass, and depends nallyrimi the momentum transf€?. One
physically motivated possibility, which we shall use indwgs the logarithmic mass running, which

is defined by
m?(Q%) = mj [In (Qz;iif"% /In (p/\_rr;%)] _H. (3.2)

When Q? — 0 one hast?(0) = n’é Even though in principle we do not have any theoretical
constraint that would put an upper bound to the valuegfphenomenological estimates place itin
the rangamy ~ A —2A [9, 10]. The other parameters were fixegpat 1—4, (y) =1/11[5, 11, 12].
The (logarithmic) running ofr?, shown in Fig. 2 for two sets of parameters, is associatell i
the gauge-invariant non-local condensate of dimensionatstained through the minimization of
[ d*(A,)? over all gauge transformations.

Also, the dynamical gluon mass generation leads to the “@stliblished" freezing of the QCD
running coupling constant. In effect, the non-perturlEatieneralization ofts(Q?) comes, here, in

the form , , p 41
% _ [Boln<Q +p/>\r22(Q )>] 7 (3.3)

where NP stands for Non-Perturbative. The zero gluon mass likads to the LO perturbative
coupling constant momentum dependence. MhE?) in the argument of the logarithm tames the

Landau pole, ands(Q?) freezes at a finite value in the IR, namely*(0) /41t = BoIn(pn?(0)/A?)
[5-7] as can be seen in Fig. 2 for the same two sets of parasneter
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Figure2: Left: The dynamical gluon mass with a logarithmic runningtigo sets of parameters, the small
mass scenarid\(= 250 MeV,my = 250 MeV,p = 1.5) is shown by the dashed curve; the high mass scenario
(A =250 MeV,my = 500 MeV, p = 2.0) by the dotted curve. Right: The running of the effectivamgiang.

We notice the numerical similarity between the perturteatind non-perturbative approaches. As
shown in Fig. 3, the coupling constant in the perturbativek rean-perturbative approaches are close
in size for reasonable values of the parameters from very@dwnward (Q? > 0.1 Ge\?). It
shows that, despite the vicinity of the Landau pole to thedwd scale, the perturbative expansion
is quite convergent and agrees with the non-perturbatseltsefor a wide range of parameters.

4. Non-perturbative Evolution and the Hadronic Scale

The strong coupling constant plays a central role in theuthsi of parton densities. Let us
see how to understand the hadronic scale in the languaged#lswof hadron structure. We use, to
clarify the discussion, the original bag model, in its magilva description, consisting of a cavity
of perturbative vacuum surrounded by non-perturbativeivat The non-perturbative vacuum is
endowed with a pressure which keeps the cavity size finite quarks and gluons are modes in
the cavity satisfying certain boundary conditions, foritagoy productmR (with mthe quark mass
andR the radius). The most simple scenario consists only of ealeuarks (antiquarks) as Fock
states building a colorless state describing the hadromn.tHeolowest mode, the equilibrium for
a system of 3 massless quarks is foundRat 4 x 2.04/Mp, leading to a radiuRk > 1. fm, the
size that is required to generate a proton mass from magglesks. The associated minimum
momentum for the system is thé&ginsyst= 1/2R > 100 MeV. This is the dynamical scale of the
model, a non-perturbative scale arising from the confinemmeacthanism, which ultimately should
be determined by\qcp if the model were to be derived from the theory, iB.the bag pressure,
should be related to the only scale of the thetgp.

The bag model is designed to describe fundamentally stedjepties, but in QCD all matrix
elements must have a scale associated to them as a resudtRGHE of the theory. A fundamen-
tal step in the development of the use of hadron models fodéseription of properties at high
momentum scales was the assertion that all calculations ithce model should have a RGE scale
associated to it [13]The momentum distribution inside the hadron is only relatetthe dynamical
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scale and not to the momentum governing the RGias a model calculation only gives a bound-
ary condition for the RG evolution as can be seen for exanmpiiee LO evolution equation for the
moments of the valence quark distribution

2 2 as(Q%) s
(@@ = (o) (G051 ) @1)
whered(|s are the anomalous dimensions of the Non Singlet distribatidnside, the dynamics
described by the model is unaffected by the evolution proedand the model provides only the
expectation value/g, (142))n, which is associated with the hadronic scale. As mentionel first
Section, the hadronic scale is related to the maximum wagéteat which the structure begins to be
unveiled. This explanation goes over to non-perturbatix@ution. The non-perturbative solution

of the Dyson—-Schwinger equations results in the appearaginae infrared cut-off in the form of

a gluon mass which determines the finiteness of the couptingtant in the infrared. The crucial
statement is that the gluon mass does not affect the dynansicke the bag, where perturbative
physics is operative and therefore our gluons inside wiidve as massless. However, this mass
will affect the evolution as we have seen in the case of thelawgiconstant. The generalization of
the coupling constant results to the structure functionyrtipat the LO evolution Eq. (4.1) simply
changes by incorporating the non-perturbative couplingstant evolution Eq. (3.3). The results
are shown in Fig. 3 (right).

The non-perturbative results, for the same parametersfasebare quite close to those of
the perturbative scheme and therefore we are confidenthtbdatter is a very good approximate
description. We note however, that the corresponding meclscale, for the sets of parameters
chosen, turns out to be slightly smaller than in the pertivba@ase 3 ~ 0.1 Ge\?), even for smalll
gluon massn, ~ 250 MeV and smalp ~ 1. One could reach a pure valence scenario at higher
Q? by forcing the parameters but at the price of generating gusanity in the coupling constant
in the infrared associated with the specific logarithmigrfasf the parametrization. We feel that
this strong parametrization dependence and the singukmgtnon physical since the fineteness of
the coupling constant in the infrared is a wishful outcoméhefnon-perturbative analysis. In this
sense, the non-perturbative approach seems to favor ariecet@re at the hadronic scale we have
not only valence quarks but also gluons and sea quarks [14libther words, in order to get a
scenario with only valence quarks, we are forced to very lawomg masses and very small values
P, while a non trivial scenario allows more freedom in the cbmf parameters.

5. Non-perturbative Evolution and Final State I nteractions.

The TMDs are the set of functions that depend on both the Bjorkariablex, the intrinsic
transverse momentum of the qudkk | as well as on the sca@?. Just like PDFs, TMDs are fixed
by the possible scalar structures allowed by hermiticigyjtp and time-reversal invariance. The
existence of leading twist final state interactions alloasstime-reversal odd functions. Thus by
relaxing time-reversal invariance, one defines two aduktidunctions, the Sivers and the Boer-
Mulders functions. The growing interest for TMDs called é@velopments of QCD evolution and
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Figure 3. Left: The running of the effective coupling. The dotted aras$lted curves represent the non-
perturbative evolution with the parameters used above. sbid curve shows the NNLO evolution with
A\ =250 MeV. Right: The evolution of the second moment of thewedequark distribution. The solid curve
represents the perturbative LO approximation.

its application to PDFs, what has been recently address&#fin[16]. In earlier evaluations of
T-odd TMDs, the collineaf perturbative evolution formalism has been naively applgedescribe
the behavior of the T-odd Transverse Momentum Dependetdrpdrstribution functions.

In the standard models’ approach towards an evaluationeofthdd distribution functions,
T-odd is allowed thanks to the the final state interactionisickv are mimicked by a one-gluon-
exchange. This gluon exchange is usually described thrthegmclusion of a perturbative gluon
propagator. Itis precisely due to this mechanism that thexgions have an explicit dependence in
the coupling constant and therefore they are ideal to aadhe physical impact of our discussion.
Since perturbative QCD governs the dynamics inside the miogfiregion, there is no need to
include a non-perturbative massive gluon in the form giveed. (3.2), inside the bag. The main
effect of the non-perturbative approach here consists imeage of the hadronic scaig and the
value of the running coupling constant at that scale, aglgléastrated in Fig. 3. This leads to a
rescaling of the Sivers and Boer-Mulders functions throagihange oixs(ug).

In previous calculations [17, 18], use has been made of th@ Mérturbative evolution, with
as(ud)/4m ~ 0.1. Although a solution with this smatks/47T can be found, with our choice
of parameters, we see, from Fig. 3, that the coupling cohstiathe hadronic scale in the non-
perturbative approach and in the NNLO evolution is consiftdarger and lies in the interval D<
as(u2) /41 < 0.3. Taking into account this range we show the first momentkeSivers function
in Fig. 4 (left), where we have two extractions from the datéha SIDIS scale [19, 20]. In order to
be able to compare our results to phenomenology, one shppld the QCD evolution equations.
Additionally to the TMD evolution [16], which should be takeare of properly from now on, one
should consider modifications of the evolution equatioriswatenergy -terra incognita

If we apply the same band of values of the coupling constahtdiadronic scale to calculation
of the Boer-Mulders function we find the results of Fig. 4 litly We see thus how the naive
scenario may serve to predict new observables and deteth@imeexperimental feasibility.

The T-odd TMDs have been evaluated in a few models. In mosiefrtodels found in the

2Collinear, in opposition to transverse, refers to schemisrevonly longitudinal momenta are relevant. Here:
PDFs that depend only on Bjorkerbesides their scale dependence.
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Figure4: The first moment of the Sivers (left) and the Boer-Muldergt(t) functions. The results are given
for both theu (thick) andd (normal) distributions. The solid (dashed) curves repretiee calculation for
a=0.3(0.1). For the plot of the I.h.s., the bands represent the errad Bamrespectively, the extraction of
the Bochum group (full) and Torino group (stripes).

literature final state interactions are approximated byntaknto account only the leading contri-

bution due to the one-gluon exchange mechanism. Few naurpative evaluations of the T-odd

functions have been proposed so far. It is worth noticing tia implementation of the final state

interactions is model dependent. The discussion we hagepted in this paper is not applicable
in general to every scheme. The implementation of the nontative evolution as discussed
here might be more complex in other (fully non-perturbdtsehemes. So is the description of the
confinement mechanism.

6. Conclusions: Can weextract asin the infrared regime from hadronic
phenomenology?

The careful analysis of the previous sections shows thah#ueonic scale is close to the
infrared divergence (Landau pole) of the coupling constantonventional values ok. However,
even in this vicinity, the convergence of thé"ND series is very good for the sameand small
modifications of it provide an extremely precise agreemengfl values ofQ? to the right of the
pole. Moreover, an exciting result is that the values olegiby perturbative QCD with reasonable
parameters as defined by DIS data, agree with the non-patitegbevaluation of the coupling
constant, which is infrared finite, for low values of the glumassmy ~ 250 MeV, andp ~ 1.

The naive model for hadron structure that we have used enabléo control the physics of
the problem from the model side as well as to infer from thdwtian scenarios that, as expected,
the naive pure valence quark scenario is not favored. Howiadso shows that the naive scenario
may well serve to make predictions, within a reasonably kbaald, which should not be far from
experimental expectations. Thus, unlike the well-seftethalism used in model calculations, our
gualitative approach points out the uncertainty causedhégimple value of the running coupling
constant, not to mention the QCD evolution effects. Onedeuimmarize a long time findings,
see e.g. [1], by saying that precision in determinationsiireg sophisticated models, while order
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of magnitude scenarios can be achieved with naive models. hEs$ a corollary, precise determi-
nations are very model dependent.

In these proceedings we have shown that the hadronic saaleeciaterpreted not only from
the point of view of perturbative evolution, but also fronatlof non-perturbative momentum de-
pendence of the coupling constant. However, both the retmmiopments in TMD evolution and
the still unapprehended non-perturbative evolution faismashould consolidate a scheme for the
matching of moderate energy models to the RGE of the thednjs cheme should combine an
explanation of why the evolution from a low hadronic scaiesrein the neighborhood of the Lan-
dau pole, is consistent and can be trusted — i.e., a hontpative approach — and the behavior
at largerQ? of the defined objects — i.e., perturbative QCD framework.

The scale fixing procedure uses experimental data and amiidse knowledge ofis in the
sense of perturbative QCD. Vice versa, the new procedurgopesl here broadens the ways of
analyzing the freezing of the running coupling constanbd@ TMDs are possible candidates to
study the behavior ofis at intermediate and lo?, likewise proposed in Ref. [21] and Ref. [22)].
A combined analysis of the extractions of the running cowyptionstant in the infrared region will
lead to a novel definition of the effective charge [23], fallng the example of Ref. [21] where
the effective coupling constants are phenomenologicalfigried from different processes and to
calculations based on Schwinger-Dyson equations.
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