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In this paper, we describe a numerical approach to evaluate Feynman loop integrals. In this ap-
proach the key technique is a combination of a numerical integration method and a numerical
extrapolation method. Since the computation is carried out in a fully numerical way, our ap-
proach is applicable to one-, two- and multi-loop diagrams. Without any analytic treatment it
can compute diagrams with not only real masses but also complex masses for the internal parti-
cles. As concrete examples we present numerical results of a scalar one-loop box integral with
complex masses and two-loop planar and non-planar box integrals with masses. We discuss the
quality of our numerical computation by comparisons with other methods and also propose a self
consistency check.
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1. Introduction

A method for the systematic calculation of loop diagrams is required to get precise theoretical
predictions for elementary particle interactions. In this paper we present a fully numerical approach
toward this computation. For simplicity we consider scalar loop integrals throughout the paper. The
general expression of scalar loop integrals in Feynman parametric representation is

(−1)N Γ(N−nL/2)

(4π)nL/2

∫ 1

0

N

∏
i=1

dxi δ (1−
N

∑
i=1

xi)
CN−n(L+1)/2

(D− iεC)N−nL/2 (1.1)

where L is the number of loops, N is the number of internal particles and n is the number of space-
time dimensions. Here, C and D are polynomials of the Feynman parameters (x i, i = 1, · · · ,N) and
they are determined by the topology of the corresponding diagram. An infinitesimal parameter, ε ,
is introduced to make the denominator non-zero throughout the integration domain. With n = 4,
the form of the expressions of the integrand for each N and L is shown in Table 1.

Table 1: Integrand of scalar loop integrals for the case n = 4 up to L = 2 and N = 7. For L = 1, C ≡ 1.

L N CN−2(L+1)/(D− iεC)N−2L

1 3 1/(D− iε)

4 1/(D− iε)2

5 1/(D− iε)3

2 5 1/(C(D− iεC))

6 1/(D− iεC)2

7 C/(D− iεC)3

A standard (analytic) method for multi-loop integrals is by a reduction to a set of integrals
using integration by parts [1]. However, reduction often yields a large number of loop integrals and
it becomes difficult to obtain an accurate numerical result due to stability problems and cancellation
error, with a loss of trailing digits. On the other hand, in our approach it is not necessary to reduce
the integral and the number of integrals to be computed is limited.

Generally speaking the numerical computation of loop integrals becomes harder with an in-
creasing number of loops and/or external legs since the behavior of the singularities becomes more
complicated. We use an automatic integration technique with an efficient numerical extrapolation
method and, if necessary, a suitable variable transformation of the Feynman parameters. Since all
computation is completely numerical, it is trivial in our approach to extend the number of loops
and legs, be it at the price of an increased amount of work as measured in the number of inte-
grand evaluations. Another advantage of the general numerical approach is that it does not matter
whether the masses of the internal particles are real or complex. So far we have applied our ap-
proach to the computation of one-loop vertex (L = 1, N = 3), box (L = 1, N = 4) and pentagon
(L = 1, N = 5) as well as two-loop selfenergy (L = 2, N = 5) and vertex (L = 2, N = 6) dia-
grams [2, 3, 4, 5, 6, 7]. Numerical results by our method show good agreement with that of other
methods [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].
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Subsequently in section 2 we give a brief explanation of our approach with respect to the
numerical techniques. In section 3 we present results of one-loop and two-loop diagrams with real
or complex masses up to L = 2, N = 7 as examples.

2. Direct Computation Method

As in Eq. (1.1), iε is introduced in the denominator of the integrand. For instance, for the case
L = 1 and N = 3 in Table 1, we separate the real and imaginary part of the integrand as

ℜe
1

D− iε
=

D
D2 + ε2 (2.1)

ℑm
1

D− iε
=

ε
D2 + ε2 (2.2)

since our numerical integration package Quadpack [22] currently does not support complex inte-
grands. While analytically ε is thought of as infinitesimal, we will replace it by a sizable number in
a sequence of the form ε = ε j = a(l− j), j = 0,1, · · · where a is a positive number and l is an integer.
When ε j is finite, the integral converges and numerical methods can be applied to the integration of
Eq. (2.1-2.2). For instance, varying ε j geometrically as 1.2(30− j) with a = 1.2 and l = 30, we get a
sequence of integrals I(ε j) corresponding to each ε j. It is our goal to obtain the limit limε j→0 I(ε j).

This is an extrapolation as ε j → 0 and we can accelerate the convergence of the sequence by an
appropriate acceleration technique. We refer to this method, i.e., the combination of the integration
and the extrapolation, as a Direct Computation Method.

2.1 Multi-dimensional integration

Basically in our method, we can choose any numerical integration procedure if it gives the nu-
merical result to enough accuracy. However, most numerical integration methods fail due to
singularities in the integration domain. We use the DQAGE routine from the one-dimensional
Quadpack package [22] for a repeated integration [2, 3, 23] in the coordinate directions of the
multi-dimensional integral. DQAGE is an adaptive quadrature routine. Generally it will partition
around an integrand singularity “hot-spot" within the integration region, for an arbitrary location
of the singularity. On each subinterval generated in the subdivision, DQAGE applies a variant of
Gaussian quadrature where the sampling points are chosen by a Gauss-Kronrod scheme.

2.2 Extrapolation

As for the extrapolation, we choose an extrapolation method which does not require explicit infor-
mation to be supplied about the sequence. Throughout this paper we present results using Wynn’s
ε algorithm [24] as the extrapolation method. This works very efficiently even for sequences of
I(ε j) with slow convergence (providing the progression of ε j is geometric).

3. Computation of the loop integrals

Here we show some numerical results by ithe Direct Computation Method. Since our approach
is based on the complete numerical technique, the computation is possible for loop integrals with
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arbitrary masses no matter whether they are real or complex. The first example, in section 3.1, is a
scalar one-loop box diagram with complex masses. In section 3.2, we treat scalar two-loop planar
and non-planar box diagrams with real masses. For these examples we not only present numerical
results but also discuss a technique for a cross-check of our numerical results. There are several
ways for cross-checking, and comparisons with results by other methods are effective. However, if
no other results are available for comparison, we propose a self consistency check to test the quality
of the computation.

3.1 One-loop box with complex masses

In this section we consider a scalar integral I(s, t) for the one-loop box diagram shown in Fig. 3.1
(L = 1, N = 4 in Table 1) defined as

I(s, t) =
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz

1
(D− iε)2 , (3.1)

where D is given by

D = p2
1x2 + p2

2y2 + tz2 + (p2
1 + p2

2− s)xy + (p2
1− p2

4 + t)xz + (p2
2− p2

3 + t)yz

+ (−p2
1 + m2

1−m2
2)x + (−p2

2 + m2
3−m2

2)y + (m2
4−m2

2− t)z + m2
2,

with s = (p1 + p2)2 = (p3 + p4)2 and t = (p1 + p4)2 = (p2 + p3)2. One-loop box integrals have
been fully analyzed and several powerful tools such as FF [25] and LoopTools [26] have been
developed for their numerical evaluation. However, it is often tedious to include complex masses
for the internal particles of the box diagram analytically.

p1

p2

p4

p3

x, m1

1 − x − y − z,

y, m3

z, m4
m2

Figure 1: One-loop box diagram

In 2007 and 2008 we compared our results for the one-loop box diagram contribution of gg→
bb̄H, to those obtained analytically by L. D. Ninh et al. [27]. A severe numerical instability due to a
Landau singularity was reported by L. D. Ninh for 211GeV≥MH≥ 2MW and 457GeV≥√s≥mt

in his numerical evaluation; and we observed the same instability using the Direct Computation
Method. To regularize the singularity we, as well as L. D. Ninh and co-authors, included two
complex masses for the internal particles as m2

t − imtΓt and M2
W − iMW ΓW , with Γt = 1.5 GeV and

ΓW = 2.1 GeV, respectively. After inclusion of the widths the instability disappeared and the results
by L. D. Ninh showed very good agreement with ours [7].

Subsequently in 2010 we computed the one-loop box integral with complex masses set to
m2

1 = 20− 0i, m2
2 = 10− 5i, m2

3 = 40− 10i and m2
4 = 10,100,1000 with p2

1 = −60, p2
2 = 10,

4



P
o
S
(
C
P
P
2
0
1
0
)
0
1
7

Numerical Evaluation of Feynman Integrals by a Direct Computation Method F. Yuasa

p1

p2

p3

p4

x1, m1

x3, m3

x2, m2

x7, m7x4, m4

x5, m5

x6, m6

Figure 2: Two-loop planar box diagram

p1

p2

p3

p4

x1, m1

x3, m3

x2, m2

x5, m5x7, m7

x4, m4

x6, m6

Figure 3: Two-loop non-planar box diagram

p2
3 = −10, p2

4 = −10, s = 200 and t = −10. The results for both the real part and the imaginary
part are compared with those by XLOOPS-GiNaC [28] by H. S. Do and P. H. Khiem. The detailed
explanation was presented by H. S. Do in CPP 2010 [30], showing not only their results and ours,
but also results by LoopTools2.5with the code D0C developed by D. T. Nhung and L. D. Ninh
et al. [29]. All the results are in good agreement.

Through the reported experiences we validated the Direct Computation Method for these loop
integrals with real or complex masses of the internal particles.

3.2 Two-loop box integrals with masses

Here we discuss the computation of the two-loop box diagram for L = 2 and N = 7 in Table 1.
Corresponding diagrams are shown in Fig. 2 and in Fig. 3. In the following let us consider the
scalar loop integral defined as

I(s, t) =−
∫ 1

0
dx1 dx2 dx3 dx4 dx5 dx6 dx7 δ (1−

7

∑̀
=1

x`)
C

(D− iεC)3 . (3.2)

D and C in the integrand for the two-loop planar box in Eq. (3.2) are given by

D = C
7

∑̀
=1

x`m2
`

− {s(x1x2(x4 + x5 + x6 + x7) + x5x6(x1 + x2 + x3 + x4) + x1x4x6 + x2x4x5)

+ tx3x4x7

+ p2
1(x3(x1x4 + x1x5 + x1x6 + x1x7 + x4x5))

+ p2
2(x3(x2x4 + x2x5 + x2x6 + x2x7 + x4x6))

+ p2
3(x7(x1x4 + x1x5 + x2x5 + x3x5 + x4x5))

+ p2
4(x7(x1x6 + x2x4 + x2x6 + x3x6 + x4x6))},

and

C = (x1 + x2 + x3 + x4)(x4 + x5 + x6 + x7)− x2
4.

Furthermore, D and C in the integrand for the two-loop non-planar box are given by

5
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D = C
7

∑̀
=1

x`m2
`

− {s(x1x2x4 + x1x2x5 + x1x2x6 + x1x2x7 + x1x5x6 + x2x4x7− x3x4x6)

+ t(x3(−x4x6 + x5x7))

+ p2
1(x3(x1x4 + x1x5 + x1x6 + x1x7 + x4x6 + x4x7))

+ p2
2(x3(x2x4 + x2x5 + x2x6 + x2x7 + x4x6 + x5x6))

+ p2
3(x1x4x5 + x1x5x7 + x2x4x5 + x2x4x6 + x3x4x5 + x3x4x6 + x4x5x6 + x4x5x7)

+ p2
4(x1x4x6 + x1x6x7 + x2x5x7 + x2x6x7 + x3x4x6 + x3x6x7 + x4x6x7 + x5x6x7)},

and

C = (x1 + x2 + x3 + x4 + x5)(x1 + x2 + x3 + x6 + x7)− (x1 + x2 + x3)2.

For both diagrams we have that s = (p1 + p2)2 = (p3 + p4)2, t = (p1 + p3)2 = (p2 + p4)2 and
p1 + p2 + p3 + p4 = 0.

Since the number of dimensions of the integration is 6 and the behavior of the integrand is very
complex, we performed a variable transformation of the Feynman parameters before numerical
integration. With a suitable transformation for each diagram [33], we completed the computation of
the real part of the two-loop planar box integral with m1 = m2 = m5 = m6 = m and m3 = m4 = m7 =

M; and the real and imaginary part of the non-planar box integral with m1 = m2 = m4 = m6 = m and
m3 = m5 = m7 = M. For both p2

1 = p2
2 = p2

3 = p2
4 = m2. The numerical results for each diagram

are plotted as a function of fs = s/m2 in Fig. 4 and in Fig. 5, respectively. For both cases, the
kinematical parameters are t =−100.02GeV2, m = 50.0GeV and M = 90.0GeV.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 5  10  15  20  25

I(
s,

t)

fs

Figure 4: Two-loop planar box: Numerical results of real part in units of 10−12 GeV−6 for 5 ≤ fs ≤ 25.
Marks (red ∗) present results by the Direct Computation Method and marks (green �) are results by the
reduction method.

We cross-checked the numerical computation in two ways. First we made a comparison with
the reduction method [31]. After reduction we get numerical results using the Monte Carlo integra-
tion package BASES [32]. For the two-loop planar box both the results by the Direct Computation

6
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 0

 0.2

 0.4

 0.6

 0.8

-6 -4 -2  0  2  4  6  8  10

I(
s,

t)

fs

Figure 5: Two-loop non-planar box: Numerical results of real and imaginary part in units of 10−12 GeV−6

for −6 ≤ fs ≤ 10. Marks (red ∗) are results for the real part and marks (green �) for the imaginary part.
Marks (light blue �) with error-bars present results by the reduction method. Marks (dark blue �) give
numerical results by the dispersion relation for 5≤ fs ≤ 10.

Method and those by the reduction method are plotted in Fig. 4. The agreement is very good in the
range of interest, 5≤ fs ≤ 25.

For the two-loop non-planar box, both the real part for the whole range and the imaginary part
for the range 4 < fs ≤ 10 are plotted in Fig. 5. For the cross-check we attempted the reduction
method. However, the behavior of the convergence by Monte Carlo integration is not very good
for the intended range. Therefore six numerical results by the reduction method are plotted with
error-bars in Fig. 5. Instead of the reduction for the cross-check, we performed a self consistency
check using the dispersion relation between the real part and the imaginary part,

ℜe I(s) =
1
π

∫ ℑm(I(s′))
s− s′− iε

ds′. (3.3)

The results for the real part constructed numerically from the imaginary part using Eq. (3.3) are
also plotted in Fig. 5 for the range 5≤ fs ≤ 10.

4. Summary

In this paper, we presented a complete numerical approach for multi-loop integrals. From a techni-
cal point of view, it is based on a combination of numerical integration and numerical extrapolation
and we call the method a Direct Computation Method. Some numerical results are given as exam-
ples of the technique. Furthermore, for each numerical result a cross-check has been presented. We
demonstrated the applicability of our approach to loop integrals of the one-loop box diagram with
both real and complex masses and two-loop planar and non-planar box diagrams with masses.
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