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1. Introduction

There are various motivations for studying noncommutative geometries. They range from
general considerations in Quantum Field Theory (QFT) [, P] and (Quantum) Gravity [B, B] to
String Theory and Matrix Models [H, B, @] and purely mathematical considerations [B]. One of the
first applications of noncommutative ideas was already within the realm of gauge theories, namely
the Quantum Hall effect [H]. What is most remarkable in my eyes, is the intimate connection
between noncommutative gauge theory and gravity. This connection is not fully understood at
present and studied from different points of view, see e.g. [, [, [, I3, I4, [3] and references
therein for a merely exemplary list of quotations.

In this note, we concentrate on models for noncommutative gauge theories, where the idea of
renormalizability will be a guiding principle. Furthermore, we consider canonically deformed 4D
Euclidean space. The coordinates satisfy the following commutation relations

[x' ¥ x/] = i@V (1.1)
where ®/ = —@/' = const, and the star product is given by the Moyal-Weyl product,

Frg(x)=e®"% r(x) g(y) (1.2)

y—Xx

In the next section, we will discuss the so-called UV/IR mixing problem in the case of scalar
field theory. It is a thread to renormalizability. Up to now, there are two different models which
overcome this problem and which are perturbatively renormalizable to all orders. Both are formu-
lated on canonically deformed Euclidean space. In Section B, we will attempt to generalize both
approaches to noncommutative U (1) gauge theory. A brief summary and some concluding remarks
follow in Section &.

2. UV/IR mixing in scalar theories

The simplest approach to noncommutative ¢* theory is to take the commutative action and
replace the pointwise products by star products. Since the star product is not relevant for bilinear
expressions, only the selfinteraction term is modified, and we obtain

1 m? A
S:/d4x (28,1(]58“(}54—2(])2—1—4“(])*(])*(])*(])) . (21)
The above action determines the Feynman rules. The propagator is the same as in the commutative
case,
1
G(p)= ——— 2.2

() oL (2.2)

while the vertex is decorated by momentum dependent phase factors:
C(p1,...,pa) = —A8W (p1 + pa+ p3 + pa)e ' LiiPiOP (2.3)

As a consequence, new types of Feynman graphs occur: In addition to the ones known from com-
mutative space, where no phases depending on internal loop momenta appear and showing the
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usual UV divergences, so-called non-planar graphs come into the game which are regularized by
phases depending on internal momenta. One-loop calculations have been performed explicitly
[Ig, 2, I8, [, 0] and hence the UV/IR mixing problem has been found: Due to the phases in
the non-planar graphs, their UV sector is regularized on the one hand, but on the other hand this
regularization implies divergences for small external momenta. For example, let us consider the
two point tadpole graph. It is given by the expression

TI(A, p) = A / d“kw Y (A) + IR (A, p). 2.4)

m2

The planar contribution is as usual quadratically divergent in the UV cutoff A, i.e. ITYY ~ A2, and
the non-planar part is regularized by the cosine,

(2.5)

where py, = ©pypy. The original UV divergence is not present, but reappears when p — 0 re-
presenting a new kind of infrared divergence. Since both divergences are related to one another,
one speaks of “UV/IR mixing”. At one-loop level, this is no problem though. It corresponds to a
counter term

[ @it 8-p). 26)

which is well behaved even in the limit 5 — 0. But higher loop insertions then lead to a term of the

/d4p<73(p) .

where n is the number of insertions. Clearly, this term exhibits a serious IR singularity. It is this

form

b(—p), 2.7)

mixing which renders the action (1) non-renormalizable. Two different strategies to cure UV/IR
mixing are known. Both modify the propagator by adding an additional term quadratic in the fields:
An oscillator term (Section Z) and a 1/ p*-term (Section D), respectively.In what follows, we
will briefly review those approaches.

2.1 The scalar Grosse-Wulkenhaar model

Adding an oscillator potential and after some awkward rewritting, the action (EZI) becomes
(ET, 2]

s= [ax(30en 1 o)+ Sotn 1 1ol @)

+‘;¢*¢+4!¢*¢*¢*¢),

where %, = 6, Jx%, and we have used iduf = [f(“ ff] . This action is covariant, i.e.
u A1
L ALQ s Q7S[9, — — 2.
S[0: 4,2, Q) = Q7S935 55 ). 2.9)
under the so-called Langmann-Szabo duality transformation [P3] between position and momenta:
7/ |det®|9(x),  pu > 2%y, (2.10)
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where ¢ (py) = [ d*x,e(~ D' PasXan ¢ (x,). The index a is labelling the legs of vertex and propagator,
resp. and defines the direction of the according momentum. This becomes a symmetry at Q =
1.Due to oscillator term, the propagator is modified and an IR damping is implemented. The
propagator is given by the Mehler kernel:

3 )
) / do e~ 2 (p—q)*coth § % (p+q)* tanh § (2.11)

Ky (p,q) = 872 Jo sinh’ o ;

where @ = ©/Q. The IR damping is also responsible for a proper handling of the UV/IR mixing
problem. The model is renormalisable to all orders in perturbation theory. The propagator depends
on two momenta, an incoming and outgoing momentum, since the explicit x-dependence of the
action breaks translation invariance. Therefore, also momentum conservation is broken. Remark-
ably, the oscillator term can be interpreted as coupling of the scalar field to the curvature of some
specific noncommutative background [Z4].

2.2 1/p? model

In the second approach, a non-local term is added to the action (ZI). In momentum space, it
reads [3]

Snt = / d“pgaﬂp);é(—p)- 2.12)

This is exactly the counter term (Z) we have discussed before. The resulting action is translation
invariant, and thus momentum conservation holds. The term (ZZI2) implements IR damping for the
propagator, i.e. G(p) — 0, for p — 0. The modified propagator has the form

1

. — (2.13)
p2_|_m2_+_;l)%

G(p)

The damping effect of the propagator becomes obvious when one considers higher loop orders. An
n-fold insertion of the divergent one-loop result ((3) into a single large loop can be written as

ik

pntl?
2+m2+%]

[T*p—ins. (p) ~ lz/d“k (~ )n [ (2.14)
k%) |k

neglecting any effects due to recursive renormalization and approximating the insertions of irregu-
lar single loops by the most divergent (quadratic) IR divergence. For the model (IC), i.e. a = 0, the
integrand is proportional to (k*)~", for k* — 0, as we have already mentioned. But a # 0 implies
that the integrand behaves like

1 %

(],%2)” {%} n+1 = (a/z)n+l ’

2.15)

which is independent of the loop order n. Using multiscale analysis, the perturbative renormalis-
ability of this model to all orders could be shown [23].
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3. Noncommutative gauge theory

The aim of this section is to generalize the approaches discussed above to noncommutative
U (1) gauge theory. They are good candidates for rernomalizable models. As we will see, UV/IR
mixing also occurs in the case of noncommutative gauge theory, and so far, no model could be
shown to be renormalisable.

3.1 Oscillator approach

As a first step, a BRST invariant action including an oscillator term has been proposed in [Z8]:

2
S= /d4x<iFuv*F“v +5(CHIpAy) — %BZ + %s(éu*%ﬂ)> , 3.1)
where (ﬁ“ contains the crucial new terms:
Gu={{fu A} A+ [{Tu e} se] + [ {aute}], (3.2)

and ¢y, is a new parameter which also transforms under BRST. The noncommutative field strength
is given by Fyy = duAy — Ay —i [Au fAV}. Summing up, the action (BE) is invariant under the
following BRST transformation:

sAy = Dyc, sc=B, sc =igc*c, 3.3)

SB:(), S~u:fu.

The above set of transformations is nilpotent. The propagator of the gauge field is given by Mehler
kernel (Z-TTl). One-loop calculations have been preformed in [Z4]. A power counting formula
has been obtained and the corrections to the vertex functions have been computed. Remarkably,
the one-point tadpole is UV-divergent. Therefore, the action (Bl) is not stable under one-loop
corrections, and a linear counter terms needed.

It seems natural to look for a more general action. The so-called induced gauge action [IH, P9]
contains the terms of (Bl) and more. It is invariant under noncommutative U (1) transformations.
The starting point is the scalar ¢* model with oscillator potential (Z8). The scalar field is then
coupled to an external gauge field. The dynamics of the gauge field is given by the divergent
contributions of the one-loop effective action generalising the method of heat kernel expansion to
the noncommutative realm. The induced action is given by

S = /d“x{Z(l—pz)(ﬁz—pz)(xv*)?v—fz) (3.4)

3 o 4
+§(1 —P?) (R +Xu)? = ()) — ZF#VFM} ,

1-Q% ~2 _ m?6

Tor» 17 = {5z Furthermore, the field strength is given by

where p =

Fuy = —il%0,Av )+ il%, Al — i[Au,Av],
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and Xu denote the covariant coordinates, Xﬂ =%, +Ay. Inthe limit Q — 0 (i.e., p — 1), we recover
the usual noncommutative Yang-Mills action. An interesting limit is Q — 1 (i.e., p — 0), where
we obtain a pure matrix model. It has a non-trivial vacuum, which makes the quantization more
difficult. The computation of propagator and Feynman rules and also one-loop calculations are
work in progress.

An alternative model has been proposed in [BA]. The gauge model is constructed on a spe-
cific curved noncommutative background space, the so-called truncated Heisenberg space. In two
dimensions the action reads

S = /dzx (1= )7 =21 - @) Fiax g + (5 — a?)u¢? (3.5)
+4iaFiz 0"+ (Dig)? — o {pi+ At 0} ). (3.6)
where « is some parameter and ( has dimension of a mass.

3.2 1/p? approach

The same strategy as in is applied here, the IR divergence is added as a counter term.
Considering the action

S= / d*x Fyy x Fyy (3.7)
for noncommutative U (1) theory, the vacuum polarization shows the following IR divergent con-
tribution: o

PubDv
A gauge invariant implementation of the above is given by the term [BI]
T 3.9
X qu uv - (3.9

The inverse covariant derivatives in the above expression need to be expanded in terms the gauge
field. Hence, vertices with arbitrary number of photon legs occur. This situation might still be
treatable, but it is simpler to use a localised version of (B19). Basically, there are two different ways
to implement the localization:

e By introducing an antisymmetric field By [E2]:

2
/ d4xFuv#Fuv — / d*x (aByuyFuy — Buy* D*D*Byy) . (3.10)

But this field is physical and introduces additional degrees of freedom. Therefore, the model
is not pure noncommutative U (1) gauge theory any more but describes different physics.

e Secondly, BRST doublet structures are employed in [B3]. The additional fields needed for
the localization of (B9) build BRST doublets. This avoids the introduction of new physical
degrees of freedom. Unfortunately, the model presented in [B3] is not renormalizable.
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The virtue of the latter approach is the implementation of the IR damping as a so-called "soft
breaking". This is in analogy to the Gribov-Zwanziger approach to undeformed QCD [B4, B3],
where an IR modification of the propagator is suggested to cure the Gribov ambiguities. The UV
renormalizability is not altered. In [BE], the "soft breaking" approach has been developed further.
As a result the following action is proposed:

S = Sinv+ng+Saux+Ssoft+Sext7 (311)
1
Sinv = /d4x1Fquuva 3.12)
Sef = /d4xs(c'8uAu), (3.13)
Saux = /d4xs(ll_/uvBuv)a (3.14)
4 = _ 1 Oup »
Ssoft = /d xS (quaﬁB,uv‘f‘quaBBNV)E(faB +67f) ) (3.15)
Sext = / d*x (Q)sAy +QFsc), (3.16)

where fu5 = duAp — dpA is the commutative U (1) field strength, @ = € O4p and f = Oyp fop.
U = dudy = 8ua6,90dp. For convenience, € has mass dimension —2, whereas 6y is rendered
dimensionless. The additional sources Q, Q,J,J ensure BRST invariance of (B711). In the IR, they
take their physical values:

Q_uvaﬁ’phys =0, J_[Jvaﬁ’phys - (5/,toc5v,3 - 5;4[3 5voc)7

r
4
7
quaﬁ|phys = 07 Juvaﬁ’phys = Z(&Lasvﬁ - auﬁ 6va)- (3.17)

Inserting the physical values and integrating out the field B,y the following action is obtained:

a A 1 6% .\ ,~. .1 = _
Sonys = / a3 FuvFuv + 7 |dudv == fuv + ( 0+ 0% ) (9A) =5 (3A) | +5 (¢duAy) ) -
20 g

(3.18)
The term proportional to y* breaks gauge invariance. It is called “soft breaking” since the parameter
7Y has dimension of mass. We have used the commutative field strength in this expression although
it is not covariant under noncommutative gauge transformations. But it only appears in the breaking
term and cannot make it worse, since gauge invariance is already violated. The advantage is that

only the propagation but not the interaction is modified due to the “soft breaking”.
The full action (BI) is invariant under the following set of BRST transformations:

sAy =Dyc, sc=igcc, sc=b, sb=0,
SWuy :Euv, SB;LV =0, sBuv=1VWuv, s¥uv =0, (3.19)
sQ=J, sJ=0, sQ=J, sJ/=0.

The fields v and B, resp. ¥ and B and the sources Q and J, resp. Q and J are BRST doublets.
Let us discuss the Feynman rules for (BI1). The vertex functions are the same as in the usual
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noncommutative U (1) theory defined by the action (BZ2). The propagator is more complicated, it

_ (2 4 B kuky &4 l}ﬂicv
Gﬁv(k)—<k +122> Suv = =3 i @R ) (3.20)

02 2
6:2y4<0+ 46 )

But for 1-loop calculation, it can be approximated by

reads

where

1 kyk
Gﬁvwﬁ@v—%), K >>1, (3.21)

since both UV and IR divergences result from high momentum range in the loop. This ignores the
IR damping, but as we have seen the damping has no effect at one-loop. Considering higher loop
insertions of a single tadpole (cf. (Z14)) the damping of the propagators between the single loops
is essential and renders the result independent of the number of inserted loops - at least in the scalar
case, for the gauge model discussed here this still needs to be shown.
A power counting formula,
dc=4—Es—E, (3.22)

where Ey denotes the number of external ¢-legs, and one-loop results have been obtained in [B8].
The correction to the vacuum polarization is given by

28> pubv | 13¢°
22 (;;2); 3(4E)Q(P26uv_l7upv)ln/\, (3.23)

I,y =

where A denotes a momentum cut-off. Remarkably, the one-loop correction is transversal. Fur-
thermore, we obtained the following results for the vertices:

2ig’  epip» Pjubjvpi,

Tt = — =5 cos ELRZIYIP (3.24)

e P M
17g2

3A,UV 8 3A tree

1—‘;va = 6(47‘5) In AVuvp (PlaPZ,PS)a (3.25)
5 3

Tivpo = —g5z A Ve, (3.26)

where Vﬁéptree and Vﬁé,;t? ¢ denote the tree level vertex functions. Regarding the three-point func-

tion, the IR divergent result (B324)) corresponds to a counter term

3409
DZ

g3Acorr / xg {A A 2PA, . (3.27)

Such a term can readily be introduced into the “soft breaking* part of the action Sgo in (B).
But in order to do so, we have to restore BRST invariance in the UV regime. Again, this can be
achieved by introducing sources Q' and J', which form a BRST doublet,

sQ' =7, sJ'=0. (3.28)
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Consequently, we insert the following terms into Sy

/d4 <J’ {Aur AV} “a a”A,, Q's <{A,1 YAy} “a % Ap>> . (3.29)

This term is BRST invariant by itself. In the IR, the sources take on their physical values

J=gy* 0 =0, (3.30)

and the counter term in (B2ZZ2) leads to a renormalization of ¥/, which is another parameter of
mass-dimension 1.
The above one-loop result leads to a negative B-function:

7g3
ﬁ = - 5"
127

4. Concluding remarks

The one-loop corrections for the novel action (B-TT) reduce to the ones known from the usual
noncommutative U (1) theory, see e.g. [, BA]. At higher loop order, differences will arise. Both,
UV and IR divergences can be absorbed in the tree level action (B11) plus (B229). But so far, a
renormalization (dis)proof is still missing. We plan to attack this problem by applying a renormal-
ization scheme such as multi-scale analysis or flow equations.

The negative B-function reflects the non-Abelian structure of noncommutative U (1) gauge theory.

Concerning the induced gauge action (B4, we plan to study the vacuum structure, to study its
quantization and as a first step to compute one-loop corrections.
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