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1. Introduction

It is already ten years since the publishing of refs. [1—3jere it was put forward a formal-
ism —called the enveloping-algebra formalism— which ledetfs. [4, 5], where the Noncommu-
tative Standard Model and noncommutative GUTs were fortadlaAn excellent introduction to
noncommutative gauge theories defined within the envedppigebra formalism can be found in
ref. [6].

Let us recall that in the enveloping-algebra formalism theaommutative fields are functions
of the ordinary fields —ie, no change in the number of degréee@dom as we move from ordinary
to noncommutative space-time— such that ordinary gaugesaie mapped into noncommutative
gauge orbits:

Aylay, Y, 0] +sncAulay, Y, 0A=Ayla, +say, P +sy, 0],
Wia,,y,0]+sncWay, @, 0] =Wa, +say, P +sy, 0],
SNCA[AL AL P, 6] = SA[AL A, 4, 6],
Aylay, P,0 =0 =ay,Wa,, ,0 =0 =Y,AA,A,P,0 =0]=A
SNCAy = N —i[AL N Sue W = TIAX W sy A = IA KA,
say =0y —ifay,A],sP =iA P,sA =iAA,
| shall call these equations standard Seiberg-Witten maptems since\ acts from the left
on the matter field&¥. The solution to these equations which match the correspgratdinary
field when the noncommutativity matri@*V, vanishes shall be called standard Seiberg-Witten
map. Now, sincey, andA take values on the Lie algebrg, of a compact Lie group, G, then, the
noncommutative field#,, andA take values on the universal enveloping algebrg.oThis is a
characteristic feature of noncommutative gauge fields éefimthe enveloping-algebra formalism.
Having defined the noncommutative gauge and matter fieldsring of the ordinary fields
using the solution to eq. (1.1), we now introduce de clas$maSUSY) noncommutative GUT(-
inspired) theory for a compact Lie group, G, by giving itsiactS.

(1.1)

S= Sgauge+ Sfermionic"‘ S—Iiggs + S(ukawa

Sgaugefdztx - % S Ca T Fuu[Z(A)] xFHV[Z (A)],

Stermionic = fd4Xl-|J|_iD[pw (A)]LPL’

Siiggs and Syukawa give tq

FuvlZ(A)] = 0uZ (A)y — O (A — 1R (A) i, Z(A)v s,

Duloy(A)YL = 0yPL —ipy(Ay) + W

SHiggs and Syukawayield, respectively, the Higgs and Yukawa sectors of the GlEbry and

are dropped to define what we call honcommutative GUT-iespiheories. We shall see later on
that the construction db,ykawaiS far from trivial and it demands the use of the so-called tit/b
Seiberg-Witten maps [7] —needed to define noncommutatiugeggansformation acting from the
left and from right. In eq. (1.2)¥ [6"Y,py(a), Yy ] is the noncommutative left-handed spinor
multiplet which is the noncommutative counterpart of thdiary left-handed spinor multiplet

Y. Yy carries an arbitrary unitary representatipg, of g. % labels the unitary irreps —typically
the adjoint and matter irreps— gfands 5, ¢, TrZ (TR % (TR) = 1/d?-

(1.2)
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Next, the quantum version of the classical field theory defai®ove is obtained by integrating
over the ordinary fields in the path-integral with Boltzmdactore'S. Sis the action above, which
we shall understand as a formal power serie§4H. | believe that this expansion i will not
yield the right Physics at Energies 1/1/8.

After those ten years, it is advisable that we pause to loak lsad assess what has been
achieved as regards the quantum properties of those GUpirad) theories. | will not cover all
that has been done so far, but | will focus on

e Gauge anomalies.
¢ Renormalisability (when there are no Higgs and no Yukawtosgg
e Construction of Yukawa terms.

e Existence of Supersymmetric versions.

2. Gauge Anomalies

When quantising a chiral gauge theory the first problem osddface is that of gauge anoma-
lies, for if the latter exist the theory will not make sens¢hatquantum level. The chiral vertices in
the classical action acquifdependent terms, which can give rise to riydependent anomalous
contributions to the famous ordinary triangle diagrams:

Sfermionic: /d4X 4_”‘74"" J{a - QGB[% faBiD(a) + fopaiDﬁ (a)]} PLw + 0(92)-

Thus, | started long ago the computation of the three typemefloop three-point diagrams
in Figure 1 giving would-beé-dependent anomalies.

ks

Figure 1: Types of6-dependent would-be anomalous three-point diagrams.

Actually, | was completely sure that these diagrams would gse to newd-dependent anomalous
terms, which would lead to extra anomaly cancelation caovtl{ which in turn would make most
—eg., the Noncommutative Standard Model, honcommutativgd <;..— of these theories mean-
ingless at the quantum level. | could not be more mistakenhs wery surprised to find that the
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6-dependent anomalous contributions to the 1PI functidnalyere BRS-exact. ie, they were not
truly anomalous terms:

ST[A[a, 0], 0] = — 51— [d* gHiHzHHa Tr (9, A 8, 0p,8,,)

(2.1)
5| s [ eHaHaksts 9P Tr (3, 01,8y, Opsp) | +0(2%) +0(67).

The computations that led to the previous results wereezhout by using dimensional reg-
ularization with a nonanticommutings. More details can be found un ref. [8]. | would like to
point out now that when | did the computations back in 2002 aswompletely unaware of the
results —obtained using cohomological techniques— byiBarienneaux and Brandt on the lack
on nonBardeen anomalies for semisimple Lie algebras. Thdtra eq. (2.1) holds, though, for
nonsemisimple Lie algebras as well.

The next challenge was to show, at one-lop, that there wefdependent gauge anomalies
at any order in6 and for any number of,'s. We did so —see ref. [10], for details— by using a
mixture of explicit Dimensional Regularization computeis, brute force of BRS equations and
cohomological BRS techniques. Indeed, by taking advanégfee fact that in Dimensional Reg-
ularization the Jacobian of¢ = 1+ M —an operator which enters the Seiberg-Witten map for
fermionsWqi = (8395 +M(a,d,y,¥5;6]ap 1) Yps— is trivial, we were able to obtain the com-
plete gauge anomaly candidate:

S (AN, O] = — i [AEHEHITE Ny, (A Py + S~ P+, )

Then, by carrying out brute force computations and by uswigomological techniques, we ob-
tained 2 [A219),t6] such that

t%d[A(a,tQ),/\()\,te),te] = suc B [AB9) 1],

and, hence, .
A3 0),A(A,8),6] = oB¥deen_g /
0

We thus concluded that th#-dependent contributions t&'[A(a, 8),A(A, 6), 6] are cohomologi-
cally trivial: they are not anomalous contributions!

Since the previous result partially relies on the use a dgiosally regularised Feynman in-
tegrals involvingys, it would be advisable to check whether that result stilldsdlor other regu-
larization methods. Another way to obtain the gauge anonsalujikawa’s method: the gauge
anomaly signals that the fermionic measure is not invanenater chiral gauge transformations.
Fujikawa’s method helps establish a connection with intieotems. As yet, we lack a derivation
of the absence d#-dependent anomalous terms by using Fujikawa’s method.

Within Fujikawa’s formalism, the ordinary gauge anomalynas in two guises, related by
local redefinitions of the corresponding currents: the ist@st form,<7on, and the covariant form,
eov-

?%[A(a,te),te].

e /con Verifies the Wess-Zumino consistency conditions and ir@bengthy and tedious al-
gebra. It is not gauge covariant.
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e /oy does not verify the Wess-Zumino conditions, it is gauge damhand, as a result, the
algebraic computations that lead to it are simpler thanén'tionsistent" case.

As | was preparing a preliminary version of this talk, | dexdo work out the covariant form, up
to first order in8, of the gauge anomaly in the U(1) case. Let me point out thetatisence of
6-dependent contributions to th&(1) gauge anomaly is nontrivial from the cohomological point
of view of Barnich, Brandt and Henneaux. The results thatdioled are displayed next.
Let me begin with the following partition function
Z[a,0] = [d@dy e [IxG7Y
7=p+R DP=g- uaa
R=—[169F f,5yHD, + 1 098 yP f,4 D]
Then, following Fujikawa, one introduces two bases of amthrmal eigenfunction ¢} and
{@n},
(12@) 12(@n = Nabm 12@(12() a0 = A2
and expands B
L/—’:Zam‘pma Ll_lzzbm(p[j7
m m
which leads to the following definition of the fermionic mees:
d@d ¢ = [ domdan.
u m
It is nor difficult to show that the gauge anomaly equationauariant disguise reads
/ A5 Troo(x) (DH[a]_7,)(x) = 83 = /[, 3, Blson,
where o, _ , _ Lo
OJ=dydy —dydy ¢ =y +iwR Y, Y =g —iPPw
53 =liMA_e fd“xz { @t e /N Pagn — o/ we AN B}
/Lf (e (x) = a Z[a.0] Jdydy 5?;£mlomce Stermionic, Stormionic = [/dXPIZY.

By changing to a plane wave basis, one gets

. ®)a
' [,8,0)cov = lIMp oo — [ANTT w(X) f% tr{(yge—'PX it elpx>}

D(e)(a) = D"‘ RaR: _[%Qaﬁ faBV“Du + % eaﬁ fopaDB]-

Let us expand next the previous result in power§ @ind remove the terms that vanish/as- .
Thus one gets

; L _@O@? .
'Q{[O‘)vav Q]COV: IIrn/\~>oo —fd4XTr (A)J‘%tr {(yge—'pxe A2 ele)} —
7 (ordinary) [, a] + 7@ [w,a, 6] +O(92)
o |w, a](ordinary) — _Tlnz fd“XTrooe“VPU fIJV fpa,

o Vw,a, 8] = [dTrw(x)[4 (X) + o (X) + 73(X)]
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= =3l olima2i [ 3 4e Strs 22 (AQ) {D(AG), R(AQ)} 72D (AT,
oy = — 3 olimpw2i [ 3% & sLotrys 72 (Ag) {D(AG), RAAG)} 22D (Ag)I,
= — 3P 0limA w2 [ 5% e Latrys 42 (Aa) {P(Aa), R(AG)} 272G (Ag)l
Some lengthy algebra and the fact thatah&s commute —U(1) case— lead to
o = — 5509 erVPI(— 2,0, foo — fua fup foo)
+ 125 09PeHVPI [ £, (0p foaDpll + 305 fapDoll) + 0y fya foo Dgll
+ 30y fap fogDull],

A =~ gy ap fuv foot
— 152 09P VP10, foa Dpll + 3y fua fooDpll + 3 (fuvdp fapDoll
+ au faB fpoDv" )]7
oty = 0.

So, finally the first order i correction to the ordinary anomaly vanishes:

o Vw,a,0] = [dXTrw(x)[4 (X) + o (X) + 3(X)] =
ﬁeaﬁsu‘/pafd“x-rrw( faB fIJV fpo' + 4 fva fIJB fpo') — 07
o [, 8, 0] oy = <7 N (¢ 3] + 0(62).

This shows complete agreement with the result obtained mgusimensional Regularization.
Higher order corrections i and the nonabelian case are still to be worked out.

3. Renormalisability

The issue of the renormalisability of noncommutative gatlgries formulated within the
enveloping-algebra formalism started off splendidly,ifavas shown by Bichl, Grimstrup, Grosse,
Popp. Schweda and Wulkenhaar [11] that the photon two-foimdtion is renormalisable at any
order in6. Unfortunately, Wulkenhaar showed [12] that thissxpanded QED was not renormal-
isable mainly due to the infamous four-point fermionic dgence:

[axBervary.

Four years after Wulkenhaars paper, there came along tteueaging results by Buric, Latas
and Radovanovic [13], and, Buric, Radovanovic and Tramp&d], that the gauge sector of SU(N)
and the noncommutative Standard Model were one-loop reslmable at first order if. And
yet, due to the infamous four-point fermionic divergencewva) the construction of theories with
a renormalisable one-loop and first-orderdrmatter sector remained an open issue. Then it ap-
peared a new paper by Buric, Latas, Radovanovic and Tracid&f, where they showed that the
divergence of the four-point fermionic function vanishes & noncommutative SU(2) chiral the-
ory with the matter sector being an SU(2)-doublet of noncanative left-hnanded fermions. This
result was later generalized in ref. [16] to any noncomningaGUT-inspired theory with only
fermions as matter fields. Let me recall that by noncommugaBUT-inspired theories | mean




NC GUTS: A Status Report C.P. Martin

gauge theories whose noncommutative fermions are all ighigapital— left-handed multiplets,
which transforms under a Grand Unification group. Thus, dnihe obstacles —what about the
renormalisability of the other 1PI functions?— to achieme-toop and first-order-it- renormalis-
ability had been removed by selecting Grand Unification s-asdve shall see, family unification,
besides— as a guiding principle.

The absence of the infamous four-point fermionic divergenpened up the possibility of
building noncommutative theories with massless fermiomincommutative chiral matter that are
one-loop renormalisable at first order éh Actually, Wulkenhaar had already pointed out in
ref. [12] that, in the massless case, noncommutative QEDBffiskell) one-loop renormmalisable
at first order in@, if one forgets about the fermionic four-point function. l8ihg last, it was shown
in ref. [17] that noncommutative GUT-inspired theoriesthad matter sector made out of fermions
and no scalars, were, on-shell and at first orddt,inne-loop-renormalisable for any anomaly safe
compact simple gauge group, if, and only if, all the flavounf@nic multiplets carry irreps with
the same quadratic Casimir, ie, renormalisability is vemtipl to family unification. This selects
S0O(10), E, and drops SU(5), as noncommutative Grand Unification gresge [18].

We shall close this section with a quick recap of the resultsef. [17]. The action of the
noncommutative GUT-inspired models in ref. [17] reads

py denotes an arbitrary unitary representation, which isectisum of irreducible representations,
Py = eBrF:lp{p. Then, lengthy computations led to the following result:
Oncey|, g and6 have been renormalised as follows

Y = (Z)) Y2k, g= U Zy0r, OHY = Z9B% ",

2
ZlI:U == 1+ 916(3;26 ,Zg 1+ 167'[28 |:11C2( )_ % Zr Cz(r)]7
Zg=—Zj— 13C5(r) — 4C2(G)),

487'(25 (

the UV divergences, at one-loop and first ordef jnvhich remain in the background-field effective
action are given by the on-shell vanishing expression

Sct:/d“xéa%? (Z&,uf aw]+cc)

where
Fu=y10"P 2 f0p +v20,7D" fro + 3, V50,7 (Grya PLTRY) T
+iZryzeap(q—_’rVuaBH_TaL/—’r)Ta+YSéuBDVva7
GrL = K0P fogPLY" +kZ0%Pyp R f5H yf
+ K0Py, AL DDH YT + K, 89Py, s A D2y’
+KBU PR fopy’; vi € R, ki € C,
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with

y1 = ImKi,y5 = 292yz,

yEl = _y592 3847'(2 (1&2( ) 1:{:2(G))7

Rek| = —llmkr — m(1332(r) —8C,(G)),

Imk5 3847'[2 11C2( ) 8C2(G)),

C. 2

Imk; = $26) Relg) = — 13- (2C,(r) — C(G)),

Imk;, = Reki; = 2Reki = —2Rek;,.
Let me stress thak, y», y5 andZg above must be flavour independent, and so mugt ye. Hence.
Ca(r), must be the same for all irreps, which in turn demands fammiification.

4. Yukawa Termsin Noncommutative GUTs

Here | shall address the issue of constructing Yukawa tennm®ncommutative SO(10) and
Es GUTs. For details | refer the reader to ref. [19].
Let us recall that Yukawa terms of ordinary SO(10) agddad

gy (ord) — /d4x it Gais War Wat @, (4.1)

where)¥ = (&), andy denotes the Yukawa coefficients. For SO(10), each fermionitiplet
Yq 1 carry the 16 irrep of SO(10), whereas, in the ®&UJT, 4 ¢ transforms under the 27 irrep of
Es. The Higgs multiplets in SO(10) carry any of the following@ps: 10, 120 and26. In the &
case the Higgs multiplets furnish any of the irreps gftlat | enumerate now: 27, 351’ and 351.
Indeed, one has the following Clebsch-Gordan decompasitio

16(X) 16 = (106 126)s ) 12045, 27(X) 27 = (27€P 351 )s P 351as
In eq. (4.1) % is an invariant tensor:
e Ceis + GajBMS + Gaic2ep =0,

where =2, M2 and =2 denote the group generators in the irreps furnishediBy, @ and yg;,
respectively.

Let @gf, Y.e¢ and @; denote the noncommutative fermionic and Higgs fields defimed
standard Seiberg-Witten maps, ie, solutions to

snc(NCField) = iAx (NCField) = s(NCField)
that match the ordinary fields 8t= 0. Then, a naive noncommutative version
Yo = [ d% 11 Cne P+ Wapr = @
of the ordinary Yukawa term in eq. (4.1) would not do! Indeed,

(NC) _
0 7& SNC:@(naive) g _ _
fd4X i1 GaiB (i/\Ac*Lngf * Wogy x @ _|_L|Jgf * INgcrxWoci * D
—l—qJXf * Wape * iNjj x®j),
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for thex-product is not commutative arihg is not invariant for enveloping-algebra valuas.

I shall now explain my strategy for constructing noncomrtivéaYukawa terms. To carry over
the properties ofis to the noncommutative theory in a consistent way, one finstlsoeséhis
with the ordinary fieldsg;, Yusr and@, and, then, defines new ordinary fields that transform
under tensor products of ordinary irreps of the gauge grbuphave the very same number of
freedom asy;, Yesr andq:

e =%ne@, Ugi =Pa: Cais.  Yanit' = Gais Yasi-

The BRS transformations of these new fields run thus:

S = —@@ @B — irpAc/\é“é),

S‘I’i%f = —i)‘i(j(p) ‘I’jOI(Bf — I ‘I’igf/\é&
SWapifr = —i)\/@ WYacitr — iL.UaAjf’)\j(iw)-

Next, to each ordinary fielgag, $i%; andyyair/, ONe associates a noncommutative counterpart
Oaplgns, &, 0], Wh[BiE,85,60] and Wonir [ Waair, &, 6],
which, respectively, are solutions to the following Hyb8diberg-Witten map equations:
snc®ag = SPag, svcWh =sWE;,  sucWaairr = Wanitr, (4.2)

where one defines
SnePag = —i AW « g — i Dac ALY,
sneWdh = —IAP « W% — WL < AY
SicWanit = —i/N\(Aué) *Wacitr — 1 Waajtr */\Efp)-
Let me point out that the action from the left and from the ti(#s opposed to both actions from
the left or both from the right) of thé\'s is the only choice consistent witfsyc)? = 0!. The
solutions to the equations in eq. (4.2) are Seiberg-Wittapsf hybrid type, a notion introduced
by Schupp [7].
We are now in the position to obtain in a natural (naive) wagammnmutative SO(10), &
Yukawa terms from their ordinary counterparts. Indeedeims ofgng, the ordinary Yukawa term
reads:

20 = @ — [a% o1 B g e
so that, its noncommutative counterpart is
. 1~
2 {m0) / d% oY) D9« Dppx Wy
In words: the noncommutative Yukawa term associateﬁ/lfBrd) is obtained by replacing each

ordinary field in the latter with its noncommutative coupit and the ordinary product with the
*-product.
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By constructior@l(”c) is invariant under the following noncommutative BRS tramsfations:
svePd, =i W9 AW s Wapr =i AW «Wocy,
Sne®Pag = —i 7\5&”;) * g — i Pacx /\(C“Q,
e = A A e =N YL
The Seiberg-Witten maps which define the honcommutativesfiate
W, = P — 501 9, PG A n+ L 6M Wafé(uwcsavaA+O(92)7
Pag = hp+ 5 OH AﬁﬂAca s+ 5 04 Al ACavCqu +
+36HY 5ufPACaVcB+ YL (pACauCDav DB
+ |§ o4V al auAc‘R?Dav DB +0(6?),
Wopr = Yapr — 5 01V al'0cduWacy + § 01V alfpcalBpwgy +O(62).
Let me now point out that if we us§3; and zais to formulate an ordinary Yukawa term,
we obtain the same ordinary Yukawa term:

2O — [d% o @ TS Way,
(0“” = [d% 7¢1 P Yanir @,
d d d
gl(or ) _ %(or ) _ %(or ).

And yet, the noncommutative counterpartsZgf*™® and,°"® are not equal:

g(nC) fd4X Q’f f/ q)| *LIJIBf *LIJan/

g(nc) fd4X yff’ CAB l,UAf @ Yot
@l(nc) 4 %(”C) + %(nc) 4 @l(nc)

Hence, | propose the following noncommutative Yukawa term
gy (nc) _ g(nC) %(HC) + %(nc)'

It can be shown —see ref [19]- that at first orde@ithis is the most general BRS invariant Yukawa-
type term

/d“x%/ Wl 1AB(6°9,6,,88] @ Wasr

that one can write. This Yukawa term is therefore renorrables at first order irf.

5. What about SUSY?

ForU(N) in the fundamental rep.#” = 1 SYM exists in the enveloping-algebra formalism as
a classical theory:

1 1 _ _
S\|CSYM: 2—92Tl’/d4x[—§ FuV*FuV - 2| /\a*o-élaDu/\a + D*D]

10
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where
Ay =Aya,Aq,d,0], A\g[a,Aq,d,B]landD = D[a,Aq,d, O]
are SW mapsSycsymis invariant under4” = 1 SUSY:
e linearly realized in terms of the noncommutative fields ¢¢his a local superfield formula-

tion)
and

e nonlinearly realized in terms of the ordinary fields (no losaperfield formulation exists,
but a nonlocal one does, at least for U(1) —see [20]).

The 4/ =1 SUSY transformations of the noncommutative fields read

Auld,6] — AL 16,6] = Au[$, 6] + &:A[9, 6]
Nal9,6] = A 9,6] = A9, 6]+ 8:Aa[$, 6]
D[¢,6] — D'®)[¢,6] =Dl[¢,6] + &D[¢, 6]
where¢ denotes generically the ordinary fields and
SeAH =gt N tigtal A%
65/\0{ == (qu)aﬁgﬁfuv + ISC{ D,
5D = —¢%a} ,DyN? + €90l D N
Now, the SUSY transformations have just introduced —do ot that we are in thd (N) case in

the fundamental representation— can be induced by perfigrennonlinear variation of the ordinary
fields, which up to first order i@, reads

Seay = 1eouA — 180, + &6v° [{a\,,ZDp(soy)T—EEH)\)—i[ap,sa“)T—EEH)\]}
—{€0nA —€0uA, dpay + T} —{ay, 0p(€0uA —EGLA) +Dp(E0uA —ETMA )
—Dy(g0pA —EEM)}} + 62,
8eha = —gqd+ 2igy (GHV)Y,, T, + 26V [—%{savx\ —EG,A,2DpAa—i[8p; Aa]}
—{ay, 4Dy (g/(THP)Y, T0) +2[8p, £, (TH)Y,, f“A]Jrj_l[gapX—Ecﬁ)\,)\a]} (5.1)
+ 62
8:d = iEG#DyA +igaHDyA + 50V |2i{ fuy, EGHDA +£0#DpA }
+i{ay,(dp +Dp)(EGHDyA +€0HDyA )} —3{€0vA —€0,A, 2D, d—iap, d]}
—{ay, 2D, (iea"DyA +ieagHDyA)—i[ay,iea*DyA +icagHDyA|
+i[eapA _e‘ap/\,d]}} + 62
The following comments concerning the nonlinear variatiohthe ordinary fields in eq. (5.1) are
now in order:

e They are truly.#" =1 SUSY transformations,
0, O, ) (fields) = i(e,0H &1 — £10* £5) 9, (fields) + gauge transformations

due to the fact that the noncommutative fields carry a linealigation of.4" = 1 SUSY.
This holds at any order i —see ref. [20].

11



NC GUTS: A Status Report C.P. Martin

e O:ay, &:Aq anddd belong to the Lie algebra of the ordinary gauge group onlygy) in
the fundamental rep. and its siblings, i.e.,

e for an arbitrary Lie algebra they take values on the envalppigebra: they are not ordinary
field variations which are also ordinary fields.

The question that one should ask next is whether we can hag $idncommutative GUTSs.
It is apparent that for simple gauge groups in any repreientat still makes sense to consider the
theory defined by the action

S= Z—}Tr/d“x[—% FHY «Fyy — 2iA% % 0¥ . DAY + D D]

where

AIJ:A“[a7Aa,d7e],/\a[a7Aa7d,9] and D:D[a,)\a7d,9]
are Seiberg-Witten maps. This action looks like a SUSY iavamoncommutative action, for it is
invariant under the following transformations

Au[9.6] — AL [9,60] = Ao, 6] + S:AL[4.6,]
Nal.6] = NS [9,6] = Aa[9, 6] + 5 Aal, 6],
D[$,6] — D®)[¢,6] = D¢, 6] + 5Dl¢. 6],
SeAH =it N +ig?GE A,

O:N\g = (o“")aBsBFWJr iggD,

5D = g%k, DAY +£%GE DA,

(5.2)

and these transformations satisfy thé = 1 SUSY algebra commutation relationship
3e,, O, ] (NCfields) = i(e20 &1 — €10 &) 0, (NCfields) + NC gauge transformations

Notice that¢ denotes the ordinary fields,, Ay andd, and NC stands for noncommutative. This
all goes in the right direction, but there is a cate’[¢, 6], ALF'[¢,6] andDE)[¢, 6] are not
Seiberg-Witten maps in the sense that there are no ordiredg i ()¢, 3, 6],

$©[¢,0,6]= ¢ +%@[9,9,0] +£a$"[9,0. 6],
such that
A 9,6] = Al [9,0,6];6], AT [9,6] = Aa[9®)[9,0,6]; 6], D¢, 6] = D[¢p®)[¢,9,6]; 6],

where A,[9; 6], Aq[¢;6] and D[¢; 6] are solutions to the Seiberg-Witten equations satisfying
Aul9;0 =0 =ay, Na[9;0 =0 =Ay andDJ[¢;0 = 0] = d. The transformations in eq. (5.2)
are therefore defined from the space of noncommutative fpdilydields —those defined by the
Seiberg-Witten map as explained above— into the space adrgkfields taking values on the
enveloping algebra. The so remaining question is whetligiirttariance has any physical conse-
guences. In this regard, it is worth noticing that —unlikehia U(N) case— the SUSY noncommu-
tative SU(N) theory thus obtained is one-loop and first-pided (off-shell) renormalisable. This
would be just a lucky chance unless there is a symmetry at,\abficst order ing, that relates the
gluon and gluino dynamics —see [21].

Some additional information regarding noncommutative BUWsories defined by means of
the Seiberg-Witten map can be found in refs. [22 —24] and.[25]
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6. Open problems

We shall conclude with a list of pressing problems:

For SO(10) and E;, inclusion of a phenomenologically relevant noncommugaliiggs po-
tential: a non trivial issue as implied by the constructiéryakawa terms.

Study of the one-loop renormalisability of those noncomative GUTS at first order if.
Construction and analysis of the properties of noncomrivet&USY SO(10), k&
Study of the phenomenological implications of noncommuga$0(10), E GUTSs.

Gauge anomalies, Fujikawa's method and index theoremsalReat the index theorem
in 2n+2 dimensions gives the gauge anomaly in 2n dimenstbasthe index of the Dirac
operator does not change under small deformations of ittttdn our formalism we are
considering small deformations of the ordinary Dirac opmraPutting it all together: no
0-dependent anomalous terms.

A challeging question: Will these noncommutative GUTs éwelty find accommodation
within F-theory [26]?

A final question: can one formulate noncommutative GUTs auithusing the enveloping-
algebra formalism? In answering this question in the affiivea the ideas presented in
refs. [27, 28] look most promising; see also [29] .
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