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1. Introduction

The aim of this note is to show how, starting from a theory of fermions coupled to a gauge and
gravitational background, it is possible to have the full bosonic action emerged. We do this using
the spectral properties of the (generalized) Dirac operator, and in this respect this work can be seen
in the framework of Connes and collaborators approach to the standard model [1, 2, 3, 4], as well
as of Sakharov induced gravity [5] (for a modern review see [6]). Our starting point is a theory
of fermions moving in a fixed background of gauge and scalar fields and a curved (Euclidean)
spacetime. We focus on the scale invariance of the theory at the classical level. To quantize it
we employ the spectral regularization, based on the cutoff of the eigenvalues of the Dirac operator.
The regularization however is not preserved at the quantum level, and a scale anomaly is developed.
There are two alternative ways to deal with quantum anomalies in local transformations [7]. On
one hand the scale invariance can be restored by changing the measure in the path integral. This
is tantamount to the addition to the fermionic action of another contribution, which renders the
bosonic background interacting to the dilaton field. An alternative realization of the dilaton may
involve a collective scalar mode of all fermions accumulated in a scale-noninvariant dilaton action.
Accordingly the spectral action arises as a part of the fermion effective action divided into the
scale non-invariant and scale invariant parts. It turns out that in both cases the resulting action is a
modification of Chamseddine-Connes spectral action but with opposite signs. The latter is a purely
spectral function of the gauged Dirac operator (and of a cutoff) which describes a gauge theory
coupled with gravity, and in the presence of the Higgs mechanism.

The invariance by (local) scale transformation introduces in the theory another field whereas
the collective dilaton mode of fermions appears after their partial bosonization as a consequence
of scale non-invariance. The dilaton effective potential has been calculated by us and in the last
section we discuss how it relates to the transition from the radiation phase with zero v.e.v. of Higgs
fields and massless particles to the electroweak broken phase via condensation of Higgs fields. It
is proven that only the second way to interpret the spectral action with collective field of dilaton
can provide the above mentioned phase transition with EW symmetry breaking during Universe
evolution.

The first six Sections of these proceedings will mostly follow reference [8], although with a
somewhat different point of view. The material in Sec.7 has not been previously published.

2. Fermions in a Fixed Background

Our starting point is a theory in which we have some matter fields, represented by fermions
transforming under some (reducible) representation a gauge group, such as the standard model
groupSU(3)×SU(2)×U(1). We need not specify the group for the moment. The fermions will
be spinors belonging to some Hilbert spaceH which we assume to be “chiral”, i.e. split into a left
and a right:

H = HL⊕HR (2.1)

A generic matter field will therefore be a spinor

Ψ =

(
ΨL

ΨR

)
(2.2)
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and in this representation the chirality operator, which we callγ is a two by two diagonal matrix
with plus and minus one eigenvalues. The two components are spinors themselves and we are not
indicating the gauge indices, nor the flavor indices. We will assume that the fermions come in a
number of identical (apart from the mass) generations.

The fermions are given a dynamics coupling them to a background field. This coupling is
performed by a classical action which we schematically write as

SF = 〈Ψ|D |Ψ〉 (2.3)

where
D = D0 +A (2.4)

is an operator onH which will call always the Dirac operator, although the formalism we are
building is more general and there may be “Dirac operators” which do not resemble at all the one
introduced for the Dirac equation.

The Dirac operator, acting of spinors is again a matrix and we have split into a “free and
gravitational” part and a “gauge coupling” part. We will see in a moment the reason for this (rather
inaccurate) terminology.

We start from

D0 =

(
γµ∂µ M
M† γµ∂µ

)
(2.5)

WhereM contains all masses (and mixings) of the fermions and theγ are those relative to a possibly
curved spacetime. In this case the fermions are coupled to the gravitational fixed background given
by the metric

gµν =
1
2
{γµ ,γν} (2.6)

The matrixA represents instead a fixed gauge background, and the interaction of the spinors
with it. We emphasize that at this stage we are just describing the classical dynamics of fermions
in a fixed background. We are deliberately vague as to the detail of the model at this stage, not
discussing important elements of the theory, like chirality or charge conjugation. The scheme pre-
sented here is largely independent on the details of the model. In particular it applies to the standard
model, especially in the approach based on noncommutative geometry introduced by Connes and
briefly discussed below.

3. Fields, Hilbert Spaces, Dirac Operators and the (Non)commutative Geometry of
Spacetime

We have introduced a (Euclidean) spacetime. And therefore implicitly the algebraA of com-
plex valued continuous functions of this space time. There is in fact a one-to one correspondence
between (topological Hausdorff) spaces and commutativeC∗-algebras, i.e. associative normed al-
gebras with an involution and a norm satisfying certain properties. This is the content of the
Gelfand-Naimark theorem [9, 10], which describes the topology of space in terms of the alge-
bras. In physicists terms we may say the properties of a space are encoded in the continuous fields
defined on them. This concept, and its generalization to noncommutative algebras is one of the
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starting points of Connes noncommutative geometry programme [1]. The programme aims at the
transcription of the usual concepts of differential geometry in algebraic terms and a key role of
this programme is played by aspectral triple, which is composed by an algebra acting as operators
on a Hilbert space and a (generalized) Dirac operator. In our case we have these ingredients, but
we have to consider instead of the algebra of continuous complex valued function, matrix valued
functions. The underlying space in this case is still the ordinary spacetime, technically the algebra
is “Morita equivalent” to the commutative algebra, but the formalism is built in a general way so
to be easily generalizable to the truly noncommutative case, when the underlying space may not be
an ordinary geometry.

The spectral triple contains the information on the geometry of spacetime. The algebra as
we said is dual to the topology, and the Dirac operator enables the translation of the metric and
differential structure of spaces in an algebraic form. There is no room in these proceedings to
describe this programme, and we refer to the literature for details [1, 11, 10, 12].

Within this general programme a key role is played by Connes’ approach to the standard
model. This is the attempt to understand which kind of (noncommutative) geometry gives rise
to the standard model of elementary particles coupled with gravity. The roots of this approach is
to have the Higgs appear naturally as the “vector” boson of the internal noncommutative degrees
of freedom [13, 14, 2]. The most complete formulation of this approach is given by thespectral
action, which in its most recent form is presented in [4].

The fermionic part of this action is (2.3), while the bosonic part is basically the regularized
sum of the eigenvalues of the Dirac operator. We will see how this action can fe inferred (with
some little modifications) from the fermionic actionSF and the need to preserve scale invariance.

4. Scale invariance of the Fermionic Action

So far we are in the presence of a classical theory of matter fields moving in a fixed back-
ground. The objects involved in the writing of the action have physical dimensions. Introduce a
scale necessary for measurements, for example an unit of length`, then it is possible to measure
volumes as̀−4, masses1 and the Dirac operator in general as`−1 and so on.

The classical action is invariant under a change of this scale, after all is amounts to just a
change of units of measurement. Recall that we have not yet introducedh̄. In principle this change
of scale could also be local, and this would be H. Weyl original “gauge” theory. We therefore have
a scale transformation symmetry:

xµ → eφ xµ

ψ → e−
3
2φ ψ

D → e−
1
2φ De−

1
2φ (4.1)

whereφ is a real parameter which for the moment we take to be constant. Note that since the
rescaling involves also the matrix part ofD, we must also rescale the masses of the fermions. In
the absence of a dimensional scale, is an exact symmetry of the classical theory.

1We take the speed of lightc = 1.
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We now proceed to quantize the theory. It can be proven [15] that if the classical theory is
invariant, the measure in the quantum path integral is not. We have an anomaly: a classical the-
ory is invariant against a symmetry transformation, but the quantum theory, due to unavoidable
regularization, does not possess this symmetry anymore. If also the quantum theory is required to
be symmetric then the symmetry can be restored by the addition of extra terms in the action. A
textbook introduction to anomalies can be found in [15]. The notion of scale anomaly is attached
to the dilatation of both coordinates, fields and mass-like parameters according to their dimension-
alities, Eq. (4.1). Evidently, in the absence of UV divergences, there is no scale anomaly which
therefore can be correlated to rescaling of a cutoff in the theory. In the case when the dilatation
is not constant,φ becomes a quantum field called thedilaton. The dilaton of this kind has been
investigated in the context of the spectral action in [16].

We remark that there is also an alternative realization of the dilaton as a collective scalar mode
of all fermions accumulated in a scale-noninvariant dilaton action. The corresponding spectral
action has an opposite sign and will be discussed later on.

In both approaches we start from the partition function

Z(D) =
∫

[dψ][dψ̄]e−Sψ = det

(
D
µ

)
(4.2)

where a normalization scaleµ is introduced and the last equality is formal because the expression
is divergent and needs regularizing. The writing of the fermionic action in this form (as a Pfaffian)
is instrumental in the solution of the fermion doubling problem in Connes approach to the standard
model [17, 18, 4]. In fact we need in principle two regulators:

• µ which may be treated as an infrared cutoff when having a discrete spectrum;

• an ultraviolet cutoffΛ in order to tame the short distance infinities.

We will regularize the theory in the ultraviolet using a procedure introduced by one of us,
Bonora and Gamboa-Saravi in [19, 20, 21] but leaving a room for a normalization scaleµ. The
energy cutoff is enforced by considering only the firstN eigenvalues ofD. Consider the projector

PN =
N

∑
n=1

|λn〉〈λn| ; N = maxn such thatλn ≤ Λ (4.3)

whereλn are the eigenvalues ofD in increasing order (repeated according to possible multiplici-
ties), |λn〉 a corresponding orthonormal basis, and the integerN is a function of the cutoff. This
means that we are effectively using theNth eigenvalue as cutoff. Therefore this number and the
corresponding spectral density depends on coefficient functions of the Dirac operator,N = N(D).

In the framework of noncommutative geometry this is the most natural cutoff procedure, al-
though it was introduced before the introduction of the standard model in noncommutative geom-
etry. It makes no reference in principle to the underlying structure of spacetime, and it is based
purely on spectral data, thus is perfectly adequate to Connes’ programme. This form of regular-
ization could be also used for field theory which cannot be described on an ordinary spacetime, as
long as there is a Dirac operator, or generically a wave operator, with a discrete spectrum.
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We define the regularized partition function2

Zµ(D) =
N

∏
n=1

λn

µ
= det

(
1l−PN +PN

D
µ

PN

)

= det

(
1l−PN +PN

D
Λ

PN

)
det

(
1l−PN +

Λ
µ

PN

)
= ZΛ(D)det

(
1l−PN +

Λ
µ

PN

)
. (4.4)

In this way we can define the fermionic action in an intrinsic way.

The regularized partition functionZΛ has a well defined meaning. Expressingψ andψ̄ as

ψ =
∞

∑
n=1

an |λn〉 ; ψ̄ =
∞

∑
n=1

bn |λn〉 (4.5)

with an andbn anticommuting (Grassman) quantities. ThenZΛ becomes (performing the integra-
tion over Grassman variables for the last step)

ZΛ(D) =
∫ N

∏
n=1

dandbn

Λ
e−∑N

n=1 bnλnan = det(DN) (4.6)

where we defined

DN = 1−PN +PN
D
Λ

PN. (4.7)

In the basis in whichD/Λ is diagonal it corresponds to set toΛ all eigenvalues larger thanΛ. Note
thatDN is dimensionless and depends onΛ both explicitly and intrinsically via the dependence of
N andPN.

It is possible to give an explicit functional expression to the projector in terms of the cutoff:

PN = Θ
(

1− D2

Λ2

)
=

∞∫

−∞

dα
1

2π i(α− iε)
eiα

(
1−D2

Λ2

)
(4.8)

whereΘ is the Heaviside step function. This integral is well defined for a compactified space
volume and therefore in the presence of the infrared cutoff which can be identified withµ. Actually

N depends also on the infrared cutoff, and the number of dimensions. It goes as∼
(

Λ
µ

)d
.

5. Cancellation of the Anomaly and the Bosonic Action

Let’s perform the first scenario and restore scale invariance. The actionSF is invariant un-
der (4.1) but the partition function is not, the reason for this is the fact that the regularization
procedure is not scale invariant. The cancellation of the anomaly then proceeds via a change of
measure, which is equivalent to the addition of another term to the action. This term compen-
sates the change in the measure due to the regularization, but being in an exponential form, can
also be seen as another addition to the action, so that the final partition function is invariant. This
calculation has been performed in [22] in the QCD context, and applied to gravity in [23].

2AlthoughPN commutes withD we prefer to use a more symmetric notation.
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Let us see in a very heuristic way, withφ constant, why the effective actionSeff is nothing
but the spectral action with the functionχ being a sharp cutoff. In this caseN is just a number of
eigenvalues smaller thatΛ, and thereby

Tr χ
(

D2

Λ2

)
= TrΘ

(
1− D2

Λ2

)
= TrPN = N(Λ, D). (5.1)

It can be written in the latter form provided that we take into account the functional dependence
N = N(Λ, D). It is worth recalling again that the integerN depends on the cutoffΛ, on the Dirac
operatorD and also on the functionχ which we have chosen to be a sharp cutoff.

Then the compensating term – the effective action, will be defined by

Zinvµ(D) = Zµ(D)
∫

dφ e−Sanom (5.2)

where the effective action will be depending onN, and hence the cutoffΛ, and onφ . Define

Zinvµ(D) =
∫

dφZµ(e−
1
2φ De−

1
2φ ) =

∫
dφZµ(Dφ ); Dφ ≡ e−

1
2φ De−

1
2φ , (5.3)

then
Sanom= logZµ(D)Z−1

µ (Dφ ) (5.4)

Let us assign
Zt = Zµ(Dtφ ) (5.5)

thereforeZ0 = Zµ(D) and

Zinvµ(D)Z−1
µ (D) =

∫
dφ

Z1

Z0
(5.6)

and hence

Sanom=−
∫ 1

0
dt∂t logZt =−

∫ 1

0
dt

∂tZt

Zt
(5.7)

We have the following relation that can easily proven

∂tZt = ∂t det

(
Dtφ

µ

)

N
= φZt

(
−1+Λ2 log

Λ2

µ2 ∂Λ2

)
trPN, (5.8)

and therefore

Sanom =
∫ 1

0
dt φ

(
1−Λ2 log

Λ2

µ2 ∂Λ2

)
TrΘ

(
1− D2

Λ2

)

=
∫ 1

0
dt φ

(
1−Λ2 log

Λ2

µ2 ∂Λ2

)
N(Λ, e−

t
2φ De−

t
2φ ). (5.9)

6. The Spectral Action

Forφ = 0 this is basically the Chamseddine-Connes Spectral Action introduced in [3] together
with the fermionic action (2.3). More precisely the bosonic part of the spectral action is

Tr χ
(

D2

Λ2

)
(6.1)

7
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whereχ is a generic cutoff function, which in our case is a sharp cutoff at energyΛ,

χ(x) =





0 x < 0
1 x∈ [0,1]
0 x > 1

(6.2)

consequence of the sharp cutoff on the eigenvalues used in (4.3). The bosonic spectral action so
introduced is always finite by its nature, it is purely spectral and it depends on the cutoffΛ. In the
original work of Chamseddine and Connes the bosonic and fermion parts of the action were treated
differently. The fermionic action on the contrary is divergent, and will require renormalization. It
is formulated as an usual integral. In the philosophy of noncommutative geometry usual integrals
can be interpreted as a regularized trace, the Dixmier trace:

∫
dx f = Trω |D|−4 f (6.3)

where the Dixmier trace of an operatorO with eigenvalueson (ordered in decreasing order, repeated
in case of degeneracy) is:

TrωO = lim
N→∞

1
logN

N

∑
n=0

on (6.4)

The integral/Dixmier trace has however to be regularized. We have seen as the cancellation of the
anomaly brings the two actions on the same footing, albeit with a modification of the bosonic part.
It must be mentioned that already in [24] the two actions are “unified” in the bosonic action with
the addition of the projection on the fermionic field to the covariant Dirac operator. This reproduces
the full spectral action with some additional non linear terms for the fermions, which could have to
do with fermionic masses.

To obtain the standard model take as algebra the product of the algebra of functions on space-
time times a finite dimensional matrix algebra

A = C(R4)⊗AF (6.5)

Likewise the Hilbert space is the product of fermions times a finite dimensional space which con-
tains all matter degrees of freedom, and also the Dirac operator contains a continuous part and a
discrete one

H = Sp(R4)⊗HF (6.6)

and the Dirac operator
D0 = γµ∂µ ⊗ I+ γ⊗DF (6.7)

In its most recent form due to Chamseddine, Connes and Marcolli [4] a crucial role is played by
the mathematical requirements that the noncommutative algebra satisfies the requirements to be a
manifold. Then the internal algebra, is almost uniquely derived to be

AF = C⊕H⊕M3(C) (6.8)

Then the bosonic spectral action can be evaluated at one loop using standard heath kernel tech-
niques [25] and the final result gives the full action of the standard model coupled with gravity. We

8
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restrain from writing it since it takes more than one page in the original paper [4]. In the process
however one does not need to input the mass of the Higgs, which comes out as a prediction. Its
value comes out to be∼ 170GeV. A small value experimentally disfavoured. It must be said how-
ever that the present form of the model needs unification of the three coupling constant at a single
energy point (given byΛ). The model also contains nonstandard gravitational terms (quadratic in
the curvature), which are currently being investigated for their cosmological consequences [26, 27].

Technically the canonical bosonic spectral action is a sum of residues, and can be expanded in
a power series in terms ofΛ−1 as

SB = ∑
n

fnan(D2/Λ2)

where thefn are the momenta ofχ

f0 =
∫ ∞

0
dxxχ(x)

f2 =
∫ ∞

0
dxχ(x)

f2n+4 = (−1)n∂ n
x χ(x)

∣∣∣∣
x=0

n≥ 0

thean are the Seeley-de Witt coefficients which vanish forn odd. ForD2 of the form

D2 = gµν∂µ∂ν1l+αµ∂µ +β

defining

ωµ =
1
2

gµν

(
αν +gσρΓν

σρ1l
)

Ωµν = ∂µων −∂νωµ +[ωµ ,ων ]

E = β −gµν (
∂µων +ωµων −Γρ

µνωρ
)

then

a0 =
Λ4

16π2

∫
dx4√gtr1lF

a2 =
Λ2

16π2

∫
dx4√gtr

(
−R

6
+E

)

a4 =
1

16π2

1
360

∫
dx4√gtr(−12∇µ∇µR+5R2−2RµνRµν

+2RµνσρRµνσρ −60RE+180E2 +60∇µ∇µE +30ΩµνΩµν)

tr is the trace over the inner indices of the finite algebraAF and inΩ andE are contained the gauge
degrees of freedom including the gauge stress energy tensors and the Higgs, which is given by the
inner fluctuations ofD.

In our case forφ constant, after performing the integration we find

Sanom =
∫ φ

0
dt ′∑

n
e(4−n)t ′

(
1−Λ2 log

Λ2

µ2 ∂Λ2

)
an fn

=
1
8
(e4φ −1)a0

(
1−2Λ2 log

Λ2

µ2

)
+

1
2
(e2φ −1)a2

(
1−Λ2 log

Λ2

µ2

)
+φa4. (6.9)

9
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There are just some numerical corrections to the first two Seeley-de Witt coefficients due to the
integration intφ and a choice of normalization scaleµ.

We notice that the alternative way of treatment of the scale degree of freedom as a collective
field leads to precisely the opposite sign of the dilaton actionSanom→ Scoll = −Sanom. Indeed the
bosonization in scale variable can be represented as,

Zµ(D) = Zinv,µ(D)
∫

dφ e−Scoll ; Zinvµ(D) =
∫

dφZ−1
µ (Dφ ) (6.10)

then

Scoll = logZ−1
µ (D)Zµ(Dφ ) =−Sanom, (6.11)

(cf. to (5.4)) .

7. The Dilaton and the effective potential

The full analysis of the model coupled with a dynamical dilaton is under way and will be
published elsewhere. Nevertheless it is already possible to say something on the interplay between
the dilaton and the Higgs, and in particular the effective potential. This can be used to characterize
cosmic evolution right after inflation starts. In particular, it may open the ways to describe the
transition from the radiation phase with massless particles to the EW symmetry breaking phase
with spontaneous mass generation due to condensation of Higgs fields.

7.1 Mass generation from Higgs-dilaton potential during cosmic evolution

We will consider in the following only the potential terms relative to the complex Higgs dou-
bletH and the dilatonφ . The quadratic term of the Higgs potential comes from thea2 term of (6.9),
while the quartic one comes from thea4 one. In this way we can derive the form effective Higgs-
dilaton potential. To focus on this goal we reduce the joint effective Higgs-dilaton (HD) potential
including only the real scalar componentH of the Higgs doublet(H1,H2)→ (0,H) subject to con-
densation. After performing renormalization the general form of the HD potential is expected to
be,

V = V0 +Ae4φ +BH2e2φ −CH4(φ +φ0)+EH2, (7.1)

where depending on the normalization scaleµ of fermion effective action compared with the cutoff
Λ one can get any sign of the coefficientsA(Λ,µ),B(Λ,µ) ≷ 0. Evidently the constantφ0 can be
eliminated by shifting the fieldφ → φ −φ0 and rescaling the constantsA,B. Thus in general both
signs and modules of these constantsA,B don’t have any a priori values. As to the constantC, if the
dilaton serves for restoration of conformal symmetry as an independent field then the conformal
anomaly coefficientC < 0 (see [8]). On the other hand, a composite dilaton made of fermions
[22] has an anomalous part of the potential of the opposite sign withC > 0. Therefore the sign
of C characterizes the nature of the dilaton field: elementary or composite one. In this Section we
are interested in evolution of fieldsφ ,H and correspondingly neglect the additional cosmological
constantV0. Thus for our purpose the potential has four arbitrary parametersA,B,C,E andφ0 = 0.

We would like to apply the HD potential for description of cosmic evolution and select out
of the acceptable signs and modules of the coefficients which can provide the evolution from a

10
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symmetric phase to the EW symmetry breaking phase with spontaneous mass generation due to
condensation of Higgs fields. Thus one has to inquire about whether the HD potential has local
minimums and what are the restrictions on the arbitrary coefficients which provide the existence of
such minimums.

Accordingly we are going to investigate all possible critical points3 of this potential depending
on the values of its coefficients. Without loss of generality one can imposeC > 0. For the opposite
sign ofC the set of critical points can be found by reflectionV →−V. One can see, thatV has no
any critical points atH = 0. Let us perform the coordinate transformation to the variableη ,

H2 = ηe2φ (7.2)

Such a transformation is non-degenerate atH 6= 0 and preserves all the information about
extremal properties of our potential.

In the new variables the potential takes the form,

V = e4φ (
A+Bη−Cφη2)+Ee2φ η . (7.3)

Critical point coordinates obey the following equations,

2A+Bη−C
2

η2 = 0 (7.4)
(

2Cη
E

)
φ − B

E
= e−2φ (7.5)

with the additional requirementη > 0 .

From the equation (7.4) we immediately find,

η1,2 =
4A

−B±
√

B2 +4AC
. (7.6)

It is known (for a quick introduction see e.g. [28]), that the equation of a typeax+b= pcx+d a,c 6=
0, can be exactly solved in terms of the LambertW(z) function [29]. By definition, it is a solution
of the equation,

z= W(z)eW(z) (7.7)

The functionWeW is not injective andW is multivalued (except for 0). If we look for real-valued
W then the relation (7.7) is defined only forx≥ 1/e, and is double-valued on(−1/e,0).

Let us introduce the notationW0(x) for the upper branch. It is defined at−1/e≤ x < ∞ and
it is monotonously increasing from -1 to+∞. The lower branch is usually denotedW−1(x). It is
defined only on−1/e≤ x < 0 and it is monotonously decreasing from -1 to−∞.

In these terms the general solution of (7.5) is given by,

φ =
1
2

W

(
Ee−

B
ηC

ηC

)
+

B
2η C

(7.8)

3Herein the notion of critical point implies a stationary one.
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Since we have two values ofη and the realW is double-valued, then the maximal number of critical
points is four. Howeverη must be positive and real, andφ must be real. From these requirements
one obtains the restrictions on the coefficients, which provide an existence of each critical point.

We shall denote our critical points as(m,n). Here the first indexm marks the sign± and
corresponds to the type of a chosenη from (7.6). Indexn ranges over−1,0 and corresponds to the
chosen branch ofW function. We specify a type of each critical point with the help of the Hessian
matrix eigenvalues and find the following results for the acceptable composition of coefficient
signs.

We seek for combinations of signs of the coefficientsA,B,C,E which provide aminimumtrig-
gering the spontaneous EW symmetry breaking at a final stage of cosmic evolution. There are 11
combinations of signs which are forbidden as they don’t provide the existence of a local minimum.

sign (A) sign(B) sign(C) sign(E)

± ± + +

- - + -

- ± - ±
+ + - ±

Only five combinations of signs can support the required minimum.

sign (A) sign(B) sign(C) sign(E)

+ + + -

+ - + -

- + + -

+ - - +
+ - - −

7.2 Transition from symmetric phase to Electroweak symmetry breaking phase and choice
of signs

Now let’s examine the possibility of scenario when at the first stage of the Universe evolution
one deals with a massless world with the vanishing v.e.v. of the Higgs field〈Hin〉 = 0 (symmetric
phase). Thus we adopt that every initial point(φin,Hin = 0) for starting evolution is acceptable if
the functionV|φ=φin(H) has a local minimum atH = 0 and if we can roll down from the initial
point to the final one which is a local minimum corresponding to the Higgs phase. We have listed
five combinations of signs of the parametersA, B, C, E which provide the existence of the local
minimum . Nevertheless not all of these combinations support the above transition scenario. Indeed
one can prove that this scenario can be realized only for positiveA,B,C and negativeE. For
this case the solution for minimum belongs to the class(+,−1) and the minimum (final-stage)
coordinates are given by,

η f in =
4A

−B+
√

B2 +4AC
> 0, (7.9)

φ f in =
1
2

W−1


Ee

− B
η f inC

η f inC


+

B
2η f inC

. (7.10)
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Figure 1: View of the effective Higgs-dilaton potential in the vicinity of its two symmetric local minima:
H = Hm = 2.29andφ = φm =−0.72. Colored lines represent the sections of the plot of the potential by the
surfaces of constantφ and constantH. Parameters are taken as follows:A = 1, B = 2.1, C = 0.2, E =−2.

The requirement forφ to be real leads to,

Emin < E < 0, Emin≡−Cη f in exp

{
−1+

B
η f inC

}
(7.11)

The additional bounds exist on the coefficients,

Be2φin +E > 0, (7.12)

to guarantee that the initial point is in the symmetric phase. Evidently the phase transition point
during evolution appears forφcrit = (1/2) ln(−E/B) < φin. It can be shown thatφ f in < φcrit < 0
and thereforeB+E > 0. We remark that the latter inequality entails|Emin|> |E| . We summarize
our finding in Fig.1.

8. Conclusions

The main conclusions of this paper are:
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• The bosonic spectral action can be provided by restoration of scale invariance in the fermion
world or

• the bosonic spectral action can emerge from scale non-invariance of fermion world in terms
of composite dilation; the two effective potentials differ in sign;

• the requirement to trigger EW breaking phase transition during evolution to the Higgs poten-
tial minimum gives a favor to the composite nature of dilaton.
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