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On the structure of the crust of neutron stars

1. Introduction

In absence of any external field, thermodynamic equilibrium demands iticadtdb the con-
stancy of the temperature the constancy of the particle chemical potentiadtioat the config-
uration. In presence of an external field, such a condition becomesg [t]J = constant, where
U denotes the external potential apglis the free-particle chemical potential. The extension of
these equilibrium conditions to the case of general relativity were obtan&al Klein [2], who
investigated the thermodynamic equilibrium conditions of a self-gravitatingconggonent fluid
of non-interacting neutral particles in spherical symmetry. The genetializef the Klein’s equi-
librium conditions to the case of a multicomponent fluid of non-interacting niepdigicles was
given by T. Kodama and M. Yamada [3]. E. Olson and M. Bailyn [4] wem gtep further ob-
taining the equilibrium conditions for a self-gravitating multicomponent fluid ofgbd particles
taking into account the Coulomb interaction. The generalization of all theseswehen strong
interactions are present has been recently accomplished by D. Pugl&sfkassuming nuclear
matter composed of interacting degenerate neutrons, protons and edeothbata equilibrium. A
general relativistic Thomas-Fermi treatment of nuclear matter within the framkesé quantum
statistics and of the general relativistic field theory for the gravitational, lferemagnetic and
the hadronic fields has been there constructed. The constancy ofrieeabeelativistic Fermi
energy of particles

EF = \/GooHn + Gw® — Gpp, (1.1)
E;;F) = +/QooMp + G+ gppP + €V, (1.2)
EF = /Gookle — €V, (1.3)

throughout the entire configuration has been there demonstrated in cogghetality. Herayog

is the 00 component of the metric tenspy,is the particle chemical potential and we adopt units
with h = c = 1. The nuclear interaction is introduced through the Walecka model (artgua
hadrodynamical model) [6, 7], in which the strong interaction is modeled bgxbleange of the
sigma, omega and rho meson-fields. The Coulomb potential is denoddibgle stands for the
fundamental chargeo is an isoscalar meson field that provides the attractive ‘long’ range part
of the nuclear forcew is a massive vector field that provides the repulsive ‘short’ rangegbart
the nuclear force, and is the massive isovector field, that accounts for the isospin contribution.
The coupling constantss, g, andg, and the meson masses;, m, andm, are fixed by fitting
experimental properties of nuclei.

The request of the constancy of the general relativistic Fermi energgllfparticle-species
brings to a neutron star equilibrium configurations quite different witheesjp the ones traditional
constructed. Some comments are here appropriate. In the constructieatafmstar configura-
tions has been traditionally assumed what is called local charge neutralitjtioome(r) = np,
namely that the electron and proton number densities are exactly the sanuh qtoga of the
configuration. It has been recently showed that such a condition vidlaesbove conditions of
equilibrium of particles [8] and therefore instead of local charge nktytrglobal charge neutral-
ity Ne = Np has been imposed there, beiNgandN, the total number of electrons and protons
respectively.
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Due to the neutrality of the crust (see e.qg. [9]), global charge neutralist beiguaranteed at
the edge of the crust. The Coulomb potential energy inside the core of timnestar is found
to be~ m;c2 and related to this there is an internal electric field of ordef0*E; whereE, =
mgc3/(eh) is the critical field for vacuum polarization. At the core-crust boundagycontinuity of
all general relativistic particle Fermi energies guarantee a self-comsistgching of the core and
the crust. As a consequence of such boundary conditions a ca#remsition surface of thickness
2> h/(mec) is developed in which an overcritical electric field appears [10]. Thérar@and proton
densities decrease sharply there due to the nuclear surface tensitireagidctron density also
decreases fast and match continuously the electron density at the dtigecaist. The continuity
of the electron Fermi energy puts stringent limits on the density we might hakie atge of the
crust: the variation of electron chemical potential at the core-crustdayipie(core) — Le(crush
must be necessarily of orde¥ ~ m;c?. Therefore a suppress of the so-called inner crust of the
neutron star is possible jfe(crusy ~ pe(core) — eV < 25 MeV, which is approximately the value
of the electron chemical potential at the neutron drip point (see e.g. [V1§) analyze here the
structure of neutron star crusts composed only by what is currently ikagvouter crust, namely
a crust with edge density 4.3 x 10 g/cn®. In this article we focus on the structure of the crust,
however, it is worth to recall that to each of these configurations acoms-transition surface with
a very rich electrodynamical structure is associated.

We obtain the mass and the radius of the core of neutron stars for the K], 3N1-SH [13],
TM1 [14] and TM2 [15] parameterizations of the Walecka model. For suctietsove construct
the corresponding crusts using two selected equations of state for gteratier. The first one
assumes a uniform free-electron fluid model and therefore neglectsotiierib interactions be-
tween the degenerate electrons and the nuclear component of fixge thanass rati@/A; the
second one is due to G. Baym et al. [16] which takes into account the @bulderaction between
point-like nuclei with a uniform fluid of degenerate electrons and the nuakegses are obtained
from experimental data. The aim of this article is to compare and contrast tgeand the thick-
ness of the crust obtained with these two different EoS and with the diffpegrameterizations of
the Walecka model.

2. Equilibium Equations of the Core

We consider non-rotating neutron stars. Introducing the non-rotatingrisally symmetric
spacetime metric
ds? = e'dt2 — e*dr? — r2d6? — r?sir? 6d¢?, (2.1)

The zero-covariant component of the conserved currents within the-fredd approximation are
given by

" = nentlo = (np — ne)e”’?, (2.2)
J® = npUg = (N +Np)e”/?, (2.3)
b p

I8 = ngug = (np —np)e’/?, (2.4)

whereu® denotes the four-velocity ama}, ns are the baryon and scalar densitiag= np — np
beingn; the particles densities of thespecie.
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The Einstein-Maxwell-Dirac equations are given by

1 A 1
A 0
1 Vv 1
) 1
e <r2 + r) = -8rGT}, (2.6)
/ /!
VRV [f_ (v —|2-/\ )} _ _e}\e‘fh’ (2.7)
doU (0) +0shs =0, (2.8)
Jdo — MGy = 0, (2.9)
9pd) —mpp =0, (2.10)
e"/2 e — eV = constant (2.11)
€"/21p 4 €V + Cyng + C,nz = constant (2.12)
Hn — Hp — He — 2Cpn3 =0, (2.13)

whereCi = (gi/m)? and the components of the energy-momentum tensoffgre:& + (E2/8m) +
Uo + (1/2)CunZ + (1/2)Cpn3, T = —P+ (E?/87) +Ug — (1/2)Cuni + (1/2)Cpn3, wheres and
P are the total energy-density and pressUie= (1/2)m2 o2+ (1/3)g20° + (1/4)gz0* is the self
interaction scalar field potential, quartic-order polynom for a renormdézifleory [17, 18, 19],
beingg, andgs the third and fourth order constants of the self-scalar interactions.

In Fig. 1 we show the results of the integration of the above equations foiLtB¢12], NL-SH
[13], TM1 [14] and TM2 [15] parameterizations of the Walecka model.
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Figure 1. Mass-radius relation of neutron star cores for selecteameterizations of the Walecka model.

3. Equilibium Equations of the Crust

Due to the neutrality of the crust (see e.g. Rotondo et al. [9]) the struetyrations to be
integrated in the crust are just the Tolman-Oppenheimer-Volkoff equations

dP  G(&+P)(m+4mr3p)

a_ , 3.1
dr r2(1— m (31)
dm 2

g =4m, (3.2)
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wherem= m(r) is the mass enclosed at the radius

For a given core, we integrate the above equations for two differenélmod the crust. The
first one is based on the uniform approximation for the electron fluid. therelectrons are consid-
ered as a fully degenerate free-gas described by a Fermi-Dirac stattstiefore no Coulomb in-
teraction either between nuclei and electrons or between electrons isdddiack. In this first case
the electromagnetic interactions are not taken into account and then it leadstergy-density
given by & = Emyne, wereng is the number density of electrons aéid= A/Z. The pressure is
given by the pressure of degenerate relativistic electrons.

The second model is based on the EoS by G. Baym, C. Pethick and P.|&uth@BPS).
In this case the crust is divided into Wigner-Size cells; each one of thalsei£ composed by a
point-like nucleus of charge-Ze with A nucleons, surrounded by a uniformly distributed cloud
of Z fully-degenerate electrons. The Coulomb interaction in this case is easilyuedhgue to
the assumption of uniformity of the electrons. The sequence of the equilibmuaiides present
at each density between“@and 43 x 10 g/cn?® in the BPS EoS is obtained by looking by the
nuclear composition that minimizes the energy. Then in this case the EoS isgiven

P=Pt Wiy (33)
Eot _ W +WL N Ee(NpZ/A) (3.4)
Np A Ny

whereWy (A, Z) is the total energy of an isolated nucleus, including rest mass of the nadbeibn
not including any electron energyy_ is the lattice energy (total Coulomb energy) per nuclé&yds,
is the electron energy and the baryon chemical potential is given-byWy + %V\A_ +Zue) /A

4. Crustscomparison

In Figs. 2 and 3 we show the mass and the thickness of the crusts obtaimethé& numerical
integration of the structure equations for the two described EoS andléote cores.
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Figure 2: Mass (left panel) and thickness (right panel) of the crusttfe EoS without Coulomb interaction
as a function of the compactness of the core for selectednedesizations of the Walecka model.

From Figs. 2 and 3 it can be seen that we obtain systematically crusts with sma#ierand
smaller thickness when Coulomb interactions are taken into account. THes i@suin line with
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Figure 3: Mass (left panel) and thickness (right panel) of the crusttie BPS EoS as a function of the
compactness of the core for selected parameterizatiome M/alecka model.

the recent findings obtained by M. Rotondo et al. [20], where the nzalag relation of white-
dwarfs has been calculated using an equation of state that generalistatitostic regimes the
Feynman-Metropolis-Teller model for compressed atoms [9].

In Table 1 we show the sequence of equilibrium nuclides present in teeddrilne neutron star
in the case of the BPS EoS for two selected neutron star chtgs = 2.558V, Reore = 12.795
km andMcore = 1.354M, andReore = 11.766 km.

Equilibrium Nuclei Below Neutron Drip \

Nucleus Z pmadgcnm3) AR;(km) R.AL%) ARy(km) R.A.2%)

%Fe 26  81x 1P 0.0165 7566x10°7 0.0064 6969x 10’
62Ni 28  27x10° 0.0310 000010 00121 000009
64Nj 28 12 x10° 0.0364 000057 00141 000054
845e 34 &@x10° 0.0046 000722 00017 000683
82Ge 32 22x10% 0.0100 002071 00039 001983
80zn 38  48x101° 0.1085 004521 00416 004384
BNi 28  16x 104 0.0531 025635 00203 025305
Fe 26  18x 104 0.0569 004193 00215 004183
240 42 19x 101 0.0715 002078 00268 002076
1227p 40 27x 104 0.0341 020730 00127 020811
120gr 38  37x 104 0.0389 023898 00145 024167
18 36 43x104 0.0101 016081 00038 016344

Table 1: pmaxis the maximum density at which the nuclide is pregei, A R, and R.A.1%), R.A.2(%)

are rispectively the thickness of the layer where a giverdideiés present and their relative abundances in
the outer crust for two different case, one with core r=a8%658M; and core radius 12.795 km, and one
with core mass 1.354M, and core radius 11.766 km.

The average nuclear composition in the crust can be obtained by calculaiegntribution
of each nuclear composition to the mass of the crust with respect to the toddheass. For the
two different coreMgore = 2.558V, Reore = 12.795 km andMcgre = 1.354M,, Rogre= 11.766 km
(see Fig. reffig:fig4), we obtain as average nuclear composjﬁ?B‘r. The corresponding crusts
with fixed nuclear compositio§g5Br for the two chosen cores are calculated neglecting Coulomb
interactions (i.e. using the first EoS). The mass and the thickness of thietewith fixedi2°Br are
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Figure4: Relative abundances of chemical elements in the crust éovib cores analyzed in Table 1

different with respect to the ones obtained using the full BPS EoS leadsurtoaverage nuclear
composition. For the two selected examples we obtain that the mass and thedhioktiee crust
with averagel2®Br are, respectively, 18% larger and 5% smaller with respect to the obitwiitie

the corresponding BPS EOS.
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