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We calculate the mass and the thickness of neutron star crusts corresponding for different neutron

star core mass-radius relations. The system of equilibriumequations, taking into account quantum

statistics, electro-weak, and strong interactions, is formulated within the framework of general

relativity in the non-rotating spherically symmetric case. The core is assumed to be composed of

interacting degenerate neutrons, protons and electrons inbeta equilibrium. The strong interaction

between nucleons is modeled through sigma-omega-rho mesonexchange in the context of the

extended Walecka model.
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On the structure of the crust of neutron stars

1. Introduction

In absence of any external field, thermodynamic equilibrium demands in addition to the con-
stancy of the temperature the constancy of the particle chemical potential throughout the config-
uration. In presence of an external field, such a condition becomes [1]µ0+U = constant, where
U denotes the external potential andµ0 is the free-particle chemical potential. The extension of
these equilibrium conditions to the case of general relativity were obtained by O. Klein [2], who
investigated the thermodynamic equilibrium conditions of a self-gravitating one-component fluid
of non-interacting neutral particles in spherical symmetry. The generalization of the Klein’s equi-
librium conditions to the case of a multicomponent fluid of non-interacting neutral particles was
given by T. Kodama and M. Yamada [3]. E. Olson and M. Bailyn [4] went one step further ob-
taining the equilibrium conditions for a self-gravitating multicomponent fluid of charged particles
taking into account the Coulomb interaction. The generalization of all these works when strong
interactions are present has been recently accomplished by D. Pugliese et al. [5] assuming nuclear
matter composed of interacting degenerate neutrons, protons and electrons in beta equilibrium. A
general relativistic Thomas-Fermi treatment of nuclear matter within the framework of quantum
statistics and of the general relativistic field theory for the gravitational, the electromagnetic and
the hadronic fields has been there constructed. The constancy of the general relativistic Fermi
energy of particles

EF
n =

√
g00µn+gωω −gρρ, (1.1)

EF
p =

√
g00µp+gωω +gρρ +eV, (1.2)

EF
e =

√
g00µe−eV, (1.3)

throughout the entire configuration has been there demonstrated in completegenerality. Hereg00

is the 00 component of the metric tensor,µi is the particle chemical potential and we adopt units
with h̄ = c = 1. The nuclear interaction is introduced through the Walecka model (or quantum
hadrodynamical model) [6, 7], in which the strong interaction is modeled by theexchange of the
sigma, omega and rho meson-fields. The Coulomb potential is denoted byV ande stands for the
fundamental charge.σ is an isoscalar meson field that provides the attractive ‘long’ range part
of the nuclear force,ω is a massive vector field that provides the repulsive ‘short’ range partof
the nuclear force, andρ is the massive isovector field, that accounts for the isospin contribution.
The coupling constantsgs, gω andgρ and the meson massesmσ , mω andmρ are fixed by fitting
experimental properties of nuclei.

The request of the constancy of the general relativistic Fermi energy for all particle-species
brings to a neutron star equilibrium configurations quite different with respect to the ones traditional
constructed. Some comments are here appropriate. In the construction of neutron star configura-
tions has been traditionally assumed what is called local charge neutrality condition ne(r) = np,
namely that the electron and proton number densities are exactly the same at each point of the
configuration. It has been recently showed that such a condition violatesthe above conditions of
equilibrium of particles [8] and therefore instead of local charge neutrality, global charge neutral-
ity Ne = Np has been imposed there, beingNe andNp the total number of electrons and protons
respectively.
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On the structure of the crust of neutron stars

Due to the neutrality of the crust (see e.g. [9]), global charge neutrality must be guaranteed at
the edge of the crust. The Coulomb potential energy inside the core of the neutron star is found
to be∼ mπc2 and related to this there is an internal electric field of order∼ 10−14Ec whereEc =

m2
ec3/(eh̄) is the critical field for vacuum polarization. At the core-crust boundarythe continuity of

all general relativistic particle Fermi energies guarantee a self-consistent matching of the core and
the crust. As a consequence of such boundary conditions a core-crust transition surface of thickness
& h̄/(mec) is developed in which an overcritical electric field appears [10]. The neutron and proton
densities decrease sharply there due to the nuclear surface tension andthe electron density also
decreases fast and match continuously the electron density at the edge ofthe crust. The continuity
of the electron Fermi energy puts stringent limits on the density we might have atthe edge of the
crust: the variation of electron chemical potential at the core-crust boundary µe(core)− µe(crust)
must be necessarily of ordereV ∼ mπc2. Therefore a suppress of the so-called inner crust of the
neutron star is possible ifµe(crust) ∼ µe(core)−eV. 25 MeV, which is approximately the value
of the electron chemical potential at the neutron drip point (see e.g. [11]). We analyze here the
structure of neutron star crusts composed only by what is currently known as outer crust, namely
a crust with edge density∼ 4.3×1011 g/cm3. In this article we focus on the structure of the crust,
however, it is worth to recall that to each of these configurations a core-crust transition surface with
a very rich electrodynamical structure is associated.

We obtain the mass and the radius of the core of neutron stars for the NL3 [12], NL-SH [13],
TM1 [14] and TM2 [15] parameterizations of the Walecka model. For such models we construct
the corresponding crusts using two selected equations of state for the crust matter. The first one
assumes a uniform free-electron fluid model and therefore neglects the Coulomb interactions be-
tween the degenerate electrons and the nuclear component of fixed charge to mass ratioZ/A; the
second one is due to G. Baym et al. [16] which takes into account the Coulomb interaction between
point-like nuclei with a uniform fluid of degenerate electrons and the nuclear masses are obtained
from experimental data. The aim of this article is to compare and contrast the mass and the thick-
ness of the crust obtained with these two different EoS and with the different parameterizations of
the Walecka model.

2. Equilibium Equations of the Core

We consider non-rotating neutron stars. Introducing the non-rotating spherically symmetric
spacetime metric

ds2 = eν(r)dt2−eλ (r)dr2− r2dθ 2− r2sin2 θdϕ2, (2.1)

The zero-covariant component of the conserved currents within the mean-field approximation are
given by

Jch
0 = nchu0 = (np−ne)e

ν/2, (2.2)

Jω
0 = nbu0 = (nn+np)e

ν/2, (2.3)

Jρ
0 = n3u0 = (np−nn)e

ν/2, (2.4)

whereuα denotes the four-velocity andnb, ns are the baryon and scalar densities,n3 = np − nn

beingni the particles densities of thei-specie.
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On the structure of the crust of neutron stars

The Einstein-Maxwell-Dirac equations are given by

e−λ (r)
(

1
r2 −

λ ′

r

)

−
1
r2 =−8πGT0

0 , (2.5)

e−λ (r)
(

1
r2 +

ν ′

r

)

−
1
r2 =−8πGT1

1 , (2.6)

V ′′+V ′
[

2
r
−

(ν ′+λ ′)

2

]

=−eλ eJ0
ch, (2.7)

∂σU(σ)+gsns = 0, (2.8)

gωJ0
ω −m2

ωω = 0, (2.9)

gρJ0
ρ −m2

ρρ = 0, (2.10)

eν/2µe−eV= constant, (2.11)

eν/2µp+eV+CωnB+Cρn3 = constant, (2.12)

µn−µp−µe−2Cρn3 = 0, (2.13)

whereCi = (gi/mi)
2 and the components of the energy-momentum tensor are:T0

0 = E +(E2/8π)+
Uσ +(1/2)Cωn2

b+(1/2)Cρn2
3, T1

1 =−P+(E2/8π)+Uσ − (1/2)Cωn2
b+(1/2)Cρn2

3, whereE and
P are the total energy-density and pressure,Uσ = (1/2)m2

σ σ2+(1/3)g2σ3+(1/4)g3σ4 is the self
interaction scalar field potential, quartic-order polynom for a renormalizable theory [17, 18, 19],
beingg2 andg3 the third and fourth order constants of the self-scalar interactions.

In Fig. 1 we show the results of the integration of the above equations for theNL3 [12], NL-SH
[13], TM1 [14] and TM2 [15] parameterizations of the Walecka model.
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Figure 1: Mass-radius relation of neutron star cores for selected parameterizations of the Walecka model.

3. Equilibium Equations of the Crust

Due to the neutrality of the crust (see e.g. Rotondo et al. [9]) the structureequations to be
integrated in the crust are just the Tolman-Oppenheimer-Volkoff equations

dP
dr

=−
G(E +P)(m+4πr3P)

r2(1− 2Gm
r )

, (3.1)

dm
dr

= 4πr2
E , (3.2)
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On the structure of the crust of neutron stars

wherem= m(r) is the mass enclosed at the radiusr.

For a given core, we integrate the above equations for two different models of the crust. The
first one is based on the uniform approximation for the electron fluid. Herethe electrons are consid-
ered as a fully degenerate free-gas described by a Fermi-Dirac statistic.Therefore no Coulomb in-
teraction either between nuclei and electrons or between electrons is included here. In this first case
the electromagnetic interactions are not taken into account and then it leads toan energy-density
given byE = ξmnne, werene is the number density of electrons andξ = A/Z. The pressure is
given by the pressure of degenerate relativistic electrons.

The second model is based on the EoS by G. Baym, C. Pethick and P. Sutherland (BPS).
In this case the crust is divided into Wigner-Size cells; each one of these cells is composed by a
point-like nucleus of charge+Ze with A nucleons, surrounded by a uniformly distributed cloud
of Z fully-degenerate electrons. The Coulomb interaction in this case is easily computed due to
the assumption of uniformity of the electrons. The sequence of the equilibriumnuclides present
at each density between 104 and 4.3×1011 g/cm3 in the BPS EoS is obtained by looking by the
nuclear composition that minimizes the energy. Then in this case the EoS is givenby

P= Pe+
1
3

WLnN (3.3)

Etot

nb
=

WN +WL

A
+

Ee(nbZ/A)
nb

(3.4)

whereWN(A,Z) is the total energy of an isolated nucleus, including rest mass of the nucleons but
not including any electron energy,WL is the lattice energy (total Coulomb energy) per nucleus,Ee

is the electron energy and the baryon chemical potential is given byµ = (WN + 4
3WL +Zµe)/A.

4. Crusts comparison

In Figs. 2 and 3 we show the mass and the thickness of the crusts obtained from the numerical
integration of the structure equations for the two described EoS and for selected cores.
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Figure 2: Mass (left panel) and thickness (right panel) of the crust for the EoS without Coulomb interaction
as a function of the compactness of the core for selected parameterizations of the Walecka model.

From Figs. 2 and 3 it can be seen that we obtain systematically crusts with smallermass and
smaller thickness when Coulomb interactions are taken into account. The results are in line with
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Figure 3: Mass (left panel) and thickness (right panel) of the crust for the BPS EoS as a function of the
compactness of the core for selected parameterizations of the Walecka model.

the recent findings obtained by M. Rotondo et al. [20], where the mass-radius relation of white-
dwarfs has been calculated using an equation of state that generalizes to relativistic regimes the
Feynman-Metropolis-Teller model for compressed atoms [9].

In Table 1 we show the sequence of equilibrium nuclides present in the crust of the neutron star
in the case of the BPS EoS for two selected neutron star cores:Mcore= 2.558M⊙, Rcore= 12.795
km andMcore= 1.354M⊙ andRcore= 11.766 km.

Equilibrium Nuclei Below Neutron Drip

Nucleus Z ρmax(g cm−3) ∆ R1 (km) R.A.1(%) ∆ R2 (km) R.A.2(%)
56Fe 26 8.1×106 0.0165 7.566×10−7 0.0064 6.969×10−7

62Ni 28 2.7×108 0.0310 0.00010 0.0121 0.00009
64Ni 28 1.2×109 0.0364 0.00057 0.0141 0.00054
84Se 34 8.2×109 0.0046 0.00722 0.0017 0.00683
82Ge 32 2.2×1010 0.0100 0.02071 0.0039 0.01983
80Zn 38 4.8×1010 0.1085 0.04521 0.0416 0.04384
78Ni 28 1.6×1011 0.0531 0.25635 0.0203 0.25305
76Fe 26 1.8×1011 0.0569 0.04193 0.0215 0.04183

124Mo 42 1.9×1011 0.0715 0.02078 0.0268 0.02076
122Zr 40 2.7×1011 0.0341 0.20730 0.0127 0.20811
120Sr 38 3.7×1011 0.0389 0.23898 0.0145 0.24167
118Kr 36 4.3×1011 0.0101 0.16081 0.0038 0.16344

Table 1: ρmax is the maximum density at which the nuclide is present;∆ R1, ∆ R2 and R.A.1(%), R.A.2(%)

are rispectively the thickness of the layer where a given nuclide is present and their relative abundances in
the outer crust for two different case, one with core mass= 2.558M⊙ and core radius= 12.795 km, and one
with core mass= 1.354M⊙ and core radius= 11.766 km.

The average nuclear composition in the crust can be obtained by calculatingthe contribution
of each nuclear composition to the mass of the crust with respect to the total crust mass. For the
two different coresMcore= 2.558M⊙, Rcore= 12.795 km andMcore= 1.354M⊙, Rcore= 11.766 km
(see Fig. reffig:fig4), we obtain as average nuclear composition105

35 Br. The corresponding crusts
with fixed nuclear composition105

35 Br for the two chosen cores are calculated neglecting Coulomb
interactions (i.e. using the first EoS). The mass and the thickness of these crusts with fixed105

35 Br are
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Figure 4: Relative abundances of chemical elements in the crust for the two cores analyzed in Table 1

different with respect to the ones obtained using the full BPS EoS leading tosuch average nuclear
composition. For the two selected examples we obtain that the mass and the thickness of the crust
with average105

35 Br are, respectively, 18% larger and 5% smaller with respect to the obtained with
the corresponding BPS EOS.
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