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The James Webb Space Telescope (JWST), scheduled for launchin 2014, is expected to revolu-

tionize our understanding of the high-redshift Universe. Even so, many of the most interesting

sources that may be hiding at redshiftsz& 10 (population III stars, dark stars, population III galax-

ies) are likely to be intrinsically too faint for JWST. Here,we explore the prospects of searching

for the first stars and galaxies by pointing JWST through foreground lensing clusters. Observa-

tions of this kind can reach significantly deeper than the currently planned JWST ultra deep field

in just a fraction of the exposure time, but at the expense of probing a much smaller volume of

the high-redshift Universe. We also presentYggdrasil, a spectral synthesis code for modelling the

first galaxies, and use it to derive the masses of the faintestpop I, II and III galaxies that can be

detected through broadband imaging in JWST ultra deep fields.
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1. Introduction

The first stars forming in the history of the Universe are generically predicted to be very
massive (& 10–100M⊙; e.g. [1, 2, 3, 4, 5]) – owing both to the lack of efficient coolants in the
almost metal-free gas out of which these objects formed, andthe higher temperature of the cosmic
microwave background radiation at high redshifts. These population III objects (herafter pop III)
are expected to start forming in isolation or in small numbers within ∼105–106M⊙ dark matter
halos (so-called minihalos) at redshiftsz≈ 20–50 (e.g. [4, 5, 6, 7]), but the prospects of detecting
such stars on an individual basis appear bleak (e.g. [8, 9, 10]), at least before they go supernovae
[11, 12].

However, pop III stars may also continue to form within the more massive halos (& 107
−

108 M⊙) hosting some of the earliest galaxies1 atz. 15 [13, 14, 15, 16, 17, 18, 19]. Since thevery
first galaxies are predicted to form in high-density regions thathave been pre-enriched by pop III
stars in minihalos, these systems are not expected to be metal-free, and are most likely dominated
by pop II or even pop I stars. True pop III galaxies may, however, form at slightly later epochs,
in low-density environments which have remained chemically pristine (e.g. [17, 19, 20]). Since
pockets of primordial gas may survive in galaxies that have already experienced some chemical
enrichment, hybrid galaxies in which pop III, II and I stars continue to form in parallel can also
be expected (e.g. [18]). Even more exotic galaxies may be envisioned if the dark matter of the
Universe has the properties required for the formation of long-lived population III stars fueled by
WIMP annihilations in minihalos (e.g. [21]). Many such “dark stars” may then end up within the
first galaxies during their hierarchial assembly, and possibly imprint detectable signatures in their
spectra [22].

The James Webb Space Telescope2 (JWST), scheduled for launch in 2014, may in principle
allow the first direct detections of massive population III stars, but this is no doubt going to be very
challenging – both because of the faintness of these sources(pop III galaxies; conventional pop
III stars or dark stars) at the relevant redshifts, but also because of the difficulties in identifying
these rare objects in the vast amounts data provided by planned JWST surveys. Here, we present
Yggdrasil– the first spectral synthesis model custom-designed for thefirst galaxies – and use it to
predict the smallest stellar population masses (for both pop I, II and III galaxies) detectable with
JWST, as a function of redshift. We also explore the prospects of a proposed JWST survey called
Palantir, which will exploit the gravitational magnification provided by foreground galaxy clusters
to hunt for the first stars and galaxies atz& 10.

2. The spectral evolution of the first galaxies

TheYggdrasil3 model [23] is a population synthesis model custom-designedfor modelling the
spectral energy distributions (SEDs) of these first galaxies. To reflect the significant variance in
terms of stellar content that these objects may display,Yggdrasil is equipped to handle mixtures

1Due to the low stellar population masses of these objects, they are sometimes also – and perhaps more appropriately
– referred to as pop III star clusters

2http://www.jwst.nasa.gov/
3named after a sacred tree in Norse mythology
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of conventional pop I, II and III stars as well as dark stars. It also includes nebular emission from
the photoionized gas and extinction due to dust. A number ofYggdrasilmodel results are already
publicly available from the author’s homepage4, and more will soon be added.

The SEDs of Single Stellar Populations (SSPs5), from various other population synthesis mod-
els can be used as input toYggdrasil, which then reweights the SSP time steps to accommodate
arbitrary star formation histories. For the duration of this paper, we will adopt Starburst99 ([24, 25])
SSPs generated with Padova-AGB stellar evolutionary tracks and the Kroupa universal stellar initial
mass function [26] throughout the mass range 0.1–100M⊙ for population II (assumed metallicity
Z = 0.0004) and pop I (assumed metallicityZ = 0.020) galaxies.

While both theoretical arguments and numerical simulations support the notion that pop III
stars must have been more massive than the pop II and I stars forming later on (for a review, see
[27]), the exact initial mass function (IMF) of pop III starsremains unknown. It has been argued
that the Universe may have produced two classes of pop III stars – pop III.1 stars which formed first,
with characteristic masses around∼ 100M⊙, and pop III.2 stars which formed somewhat later and
had lower characteristic masses of (∼ 10 M⊙) due to HD cooling promoted by the Lyman-Werner
feedback provided by the pop III.1 stars (e.g. [3, 28]). Eventhough the latest simulations suggest
that the actual situation may be far more complicated (e.g. [4, 5], we have chosen to adopt this pop
III.1/pop III.2 convention throughout this paper.

Naively, one would expect the pop III.1 IMF to be appropriatefor the stars forming in isolation
(or in small numbers) in∼ 105−6 M⊙ minihalos capable of H2 cooling, whereas the pop III.2 IMF
may be more relevant for the first pop III galaxies forming in∼ 107−8 M⊙ halos capable of HI
cooling. However, given the large uncertainties still attached to this picture, we here consider both
pop III.1 and pop III.2 IMFs as plausible alternatives for pop III galaxies. For pop III.1 galaxies,
we adopt the stellar SSP from [29] with a power-law IMF (dN/dM ∝ M−α) of slopeα = 2.35
throughout the mass range 50–500M⊙. For pop III.2 galaxies, we adopt the TA model from [30],
which has a log-normal IMF with characteristic massMc = 10M⊙ and dispersionσ = 1 M⊙.

The contribution to the SED from photoionized gas is computed using the procedure outlined
in [31]. In this machinery, the stellar population SED is, atevery age step, used as input to the pho-
toionization code Cloudy [32]. This results in a self-consistent prediction for the nebular continuum
and emission line fluxes which reflects the temporal changes in the ionizing radiation. Throughout
this paper, we will for simplicity assume that all of the ionizing radiation produced by stars within
the model galaxies is absorbed locally and that no Lyman continuum radiation is escaping into the
intergalactic medium, even though simulations of pop III galaxies suggest that substantial leakage
may well occur [16].

In Fig. 1, we use this model to predict the population masses of the faintest star-forming objects
detectable though JWST broadband imaging in an ultra deep field (UDF), as a function of age and
metallicity/IMF (pop III.1, pop III.2, pop II and pop I). These limits are based on the requirement
that galaxies are detected at 5σ in at leastone JWST broadband filter (spectral resolutionR= 4)
after a 100 h exposure (per filter). To avoid predictions hinging on the highly uncertain luminosity
of the Lyα emission line at high redshifts, we assume the Lyα escape fraction to be zero – i.e. the

4www.astro.su.se/∼ez
5also known as single-age stellar populations or instantaneous-burst populations

3



P
o
S
(
C
R
F
 
2
0
1
0
)
0
2
2

Pointing the James Webb Space Telescope through lensing clusters Erik Zackrisson

Lyα line does not contribute to the predicted fluxes at all. When computing the JWST broadband
fluxes, we furthermore set all SED fluxes shortward of Lyα to zero for model galaxies atz> 6, to
reflect the high level of absorption in the neutral intergalactic medium at these epochs.

At z < 15, and for the model spectra used here, these mass limits aretypically determined
by the predicted fluxes in the NIRCam F200W filter (theR = 4 filter with the best sensitivity).
Please note that we here use the mass of gas converted into stars since the beginning of a star
formation episode. This is equivalent to the population mass often discussed in the context of
simulations, where the overall gas mass is multiplied by thestar formation efficiency of the first
starburst episode to compute the gas converted into stars. The mass inluminous starsat these ages
can be considerably lower at ages& 3 Myr (especially in the case of pop III.1 and pop III.2), since
many of the stars forming att = 0 yr have then already faded away.

As seen in Fig. 1,M ∼ 106–107 M⊙ star-forming pop I and pop II galaxies (black and red
lines; mostly overlapping) can be detected atz≈ 10, whereas pop III.1 galaxies (blue lines) can be
detected even if they have masses an order of magnitude lower. Pop III.2 galaxies (green lines) are
intermediate between pop III.1 and pop I/II in these diagrams. The reason for the lower detection
masses for pop III galaxies is primarily because of the higher relative contribution from nebular
emission to the fluxes of these objects. The differences between the types of galaxies would not
be as conspicuous if a substantial amount of Lyman continuumradiation were to escape into the
intergalactic medium (as predicted in [16])

3. Hunting for Pop III galaxies in lensed fields

Unfortunately, some of the most exciting objects that mightbe hiding at high redshifts are
likely to be too faint for JWST in UDF-style observations. This includes isolated pop III stars
[8, 9, 10], dark stars with massesM . 103 M⊙ [22] and possibly also pop III galaxies. For example,
the most massive pop III galaxies atz≈ 10 in the Trenti et al. simulations [20] have baryonic
masses of∼ 107 M⊙. According to Fig. 1, at least 105 M⊙ of these need to be converted into stars
in the first star formation episode (i.e. star formation efficiency ε & 10−2) in order for such an
object to be detectable in a JWST UDF. The gas must also be sufficiently dense to keep the HII
region confined inside the virial radius of the its host halo,otherwise ionizing radiation would be
leaking into the intergalactic medium, with a lower overallluminosity as the result [16]. Fainter
objects may, however, be detectable if one exploits the gravitational lensing provided by massive
foreground objects. Galaxy clusters atz≈ 0.1–0.6 can in principle boost the fluxes of high-redshift
objects by factors ofµ ∼ 10–100 (e.g. [33, 34, 35, 36]). This means that one can reach significantly
deeper than the JWST UDF, in just a fraction of the exposure time, by targeting a lensed field. The
obvious drawback is that the high-redshift volume probed atthe same time drops by a factor equal
to the magnificationµ , which means that rare types of objects may be impossible to detect this
way, even if lensing lifts their apparent magnitudes above the flux detection limit.

Our team is currently investigating the prospects of a proposed JWST survey calledPalantir6,
which will hunt for exotic high-redshift objects in fields lensed by foreground galaxy clusters. The
primary target of the survey is the galaxy cluster MACS J0717.5+3745 atz= 0.546 – arguably the

6named after a magical object in Lord of the Rings

4



P
o
S
(
C
R
F
 
2
0
1
0
)
0
2
2

Pointing the James Webb Space Telescope through lensing clusters Erik Zackrisson

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9
1 Myr

z

lo
g 10

 M
m

in
 (

M
so

la
r)

Pop III.1
Pop III.2
Pop II
Pop I

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9
3 Myr

z

lo
g 10

 M
m

in
 (

M
so

la
r)

Pop III.1
Pop III.2
Pop II
Pop I

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9
10 Myr

z

lo
g 10

 M
m

in
 (

M
so

la
r)

Pop III.1
Pop III.2
Pop II
Pop I

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9
30 Myr

z

lo
g 10

 M
m

in
 (

M
so

la
r)

Pop III.1
Pop III.2
Pop II
Pop I

Figure 1: Predicted mass detection limits in the JWST ultra deep field.The panels show the lowest masses
of burst-like stellar populations that JWST may detect through broadband imaging (in filters with spectral
resolutionR = 4) at 5σ after a 100 h exposure, as a function of redshift. The line colours represent the
different population metallicities and IMFs (Z = 0 for pop III.1 and pop III.2,Z = 0.0004 for pop II and
Z = 0.020 for pop I) – see main text for details. Each panel corresponds to a different starburst age (1, 3, 10
and 30 Myr) for a population forming stars at a constant rate sincet = 0 yr.

best lensing cluster currently available for studies of high-redshift objects [35] – but other clusters
with similar properties (e.g. [36]) may possibly also be covered. In [22], we demonstrate that
M . 103 M⊙ dark stars may in principle be within reach of aPalantir-style survey, but this requires
that a very high fraction (& 0.1) of the minihalos harbouring pop III stars produce long-lived dark
stars (with lifetimes& 107 M⊙), and that very long JWST exposures (≈ 30 h per filter) are used.
The prospects of detecting pop III galaxies may, however, besubstantially brighter.

By projecting pop III galaxy simulations [20] through the MACS J0717.5+3745 magnification
maps, and usingYggdrasilto derive the intrinsic fluxes of these objects, we predict that Palantir
should be able to detect at least a handful ofz≈ 7−15 pop III galaxies in about 3 hours of JWST
NIRCam/F200W imaging, as long as the typical star formationefficiencies of these objects are
ε & 3× 10−3. Here, we have assumed an instantaneous-burst population with a pop III.2 IMF
(model TA from [30]; lognormal IMF centered on 10M⊙) and no Lyman continuum leakage. We
moreover impose an upper age limit of 5 Myr, after which we assume that these galaxies lose
their spectral identities as pop III galaxies due to subsequent, metal-enriched star formation. By
comparison, az = 10 galaxy of this type would need to be a factor of≈ 5 more massive to be
detectable in a JWST UDF. Hence, there is a good chance of detecting objects that are intrinsically
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fainter than the JWST UDF detection limit, in just a fractionof the observing time (3% in this
case).

4. Summary

We present a new spectral synthesis code designed to predictthe SEDs of the first galaxies
(pop I, II and III with or without nebular emission, dust extinction and dark stars). Using this
model, we find that Pop III galaxies may be sufficiently brightto be detectable atz= 10 through
JWST ultra-deep imaging (100 h exposures on a single, unlensed field), but this requires low Lyman
continnum escape fractions (fesc∼ 0) and relatively high star formation efficiencies (ε & 0.01). Pop
III galaxies that are at least factor of≈ 5 times less luminous may, however, be detectable in lensed
fields in just a fraction (≈ 3%) of the observing time. We propose a JWST survey calledPalantir
which will hunt for faint, exotic objects (pop III galaxies,dark stars etc.) behind galaxy clusters
like MACS J0717.5+3745 – arguably the best lensing cluster currently known for surveys of this
type.
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