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1. Introduction

For some time already, it has been realized that in non-fahlkinematics, e.g. deeply virtual
Compton scattering (DVCS), the scattering amplitudes, thod cross sections, can be expressed
in terms of objects, generalized parton distributions (GRhich complement the knowledge
encoded in parton distribution functions [1, 2, 3]. Thisad&s inspired many authors, whose work
has been summarized in several important review papers &, 5

The paramount feature of the treatment of deep inelastitestry (DIS) and DVCS is factor-
ization, i.e., writing the full scattering amplitude as axeolution of a hard-scattering amplitude to
be calculated in perturbation theory, and a soft part emingdghe hadronic structure. The use of
a hard photon that is far off-shell, sayg? = Q? >> any relevant soft mass scale, enables factor-
ization theorems [7] with the identification of the hard $eahg amplitude. Light-front dynamics
(LFD) (see e.g. Ref. [8]) can be invoked to further analyze physics, as it has the advantage
that vacuum diagrams are either rigorously absent or sgppte In the context of single-photon
physics (e.g. hadron form factors), it means that in a refs@drame where the momentum of the
photong has vanishing plus component [2fF = (q° 4+ ¢%)/,/2 = 0, it cannot create partons, as
their momenta must have positive plus-components and gwsponents are conserved in LFD.
This simplification facilitates the partonic interpretatiof amplitudes [10]. In two-photon physics
such as DVCS, however, both photons cannot have vanishirsgcpinponents simultaneously and
thus further investigation is called for to analyze the ckodf a preferred kinematics in which
the amplitudes are calculated and the link between the ¢kieal quantities, GPDs, and the cross
sections can be established.

This paper is devoted to the issue of kinematics in compulirddVCS amplitude in terms of
widely used reduced operators that define GPDs. We do so sirtiest possible setting, namely
DVCS on a structure-less spin-1/2 particle. Although thighithseem to preclude the discussion
of the GPD formalism, we shall argue that important less@mshe learnt from the anlysis of this
“bare bone” structure on top of which the GPDs are formulated

In the next section, Section 2, we first report our “benchrhadculation of the complete
full DVCS amplitude which satisfies all the first principlesch as gauge invariance and Lorentz
invariance. In Section 3, we discuss the reduction of tHeafuplitude in the formulation of GPDs
and compare the results between the full calculation anddtaced calculation. Conclusions
follow in Section 4.

2. Complete Amplitude with Lepton Current: Benchmark Calculation

Before we get into the discussion of the GPD formalism, wé fagort our benchmark calcu-
lation of the complete full DVCS amplitude for the scattgriof a massless leptatoff a point-like
fermion f of massm. In the final state, we find the scattered leptonthe fermionf’ with mo-
mentumk’ and a (real) photoy, viz £ — ¢/ + y*, y*+ f — y + f’. (‘Complete’ means that the
amplitude includes the leptonic part and ‘full’ means thaepproximations are made in the calcu-
lation of the hadronic amplitude.) The complete amplitutire®e level (see Fig. 1) can be written
as 1

M= Z,Z({)\’,/\}h)@z%({s’,s}{h’,h}), (2.1)
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Figure 1: The two contributions to tree-level Compton scatterigsghannel (left), andi-channel (right).

where the quantitied’, A, h', h, s, ands are the helicities of the outgoing and incoming leptons,
outgoing and incoming photons, and the recoiling and tdrgetions, respectively.
Leaving out inessential factors, we may write

LA A = a5 AN g (g hueA); - A2 ({s,sH,h}) =U(K;s)(Os+ ouulks), (2.2)
where thes- andu-channel operators of the intermediate fermion are given by

g kedrme@h). o ganKod mg ) o

N k)27

It is straightforward to confirm that both the lepton ampliguZ’({A’, A }h) and the hadronic
amplitude 7 ({s,s}{N,h}) satisfy the gauge invariance by substitutgigq; h) by ¢. To test the
Lorentz invariance of the complete amplitug# given by Eqg. (2.1), however, we may check if the
amplitude is independent of the reference frame. In facReh [11], we have considered three
kinematics, each of which has its own merit of consideratamd confirmed that# is indeed
identical in all three kinematics. Since the details of tireeknatics and the results are presented
in Ref. [11], here we just discuss the characteristic of danbmatics and the key finding from
the corresponding calculation. All of the three kinemafitk], denoted as K1, K2, and K3 in the
following, correspond to the hard-scattering part of a DV@&plitude where the fermions are the
quarks andp™ is the plus-component of the momentum of the parent hadrgetta

(K1) d-Kinematics ¢ — 0 asd — 0)
In the & — 0 limit, the d-kinematics coincides with the well-knowgt = 0 frame [12] frequently
cited in the discussion of the GPD formalism. Noticing thakting g™ = 0 will lead to singular
polarization vectors in the LF gauge” = 0 (see e.g. Ref. [11]), we proceed with cacg: is set
to op*, and all amplitudes are expanded in powerpfaking the limitd — 0 at the very end
of the calculation of the complete, physical amplitude. sTigplaces# by qg’ and qg is given

by o = (6p+,Q, 0, 2(ng)p+ + ZX(X{"}ZW), wherex = - is the fraction of the plus momentum of

the initial quark with respect to the parent hadron target &n- q’+p1q+ is the skewness in DVCS.

The corresponding lepton momenta are giverfty= (6*, Q,0, 2%) and/'H = ¢+ — qg, where the
value of¢* is determined by the on-mass-shell condit#n= 0 for the massless lepton.

(K2) gt = 0 Kinematics (effectively, ‘1+1’ dim.)
Thed™ = 0 kinematics without any transverse component (effegtivék-1' dimensional) avoids
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Table 1: Complete DVCS amplitudes in three kinematics, denoted a&KRland K3

Zhg({)\la)‘}vh)q_:li‘%p({hlah}{slvs})
{A,A} KN {d.s} K1 K2 K3
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the singularity in the polarization vectors of the real gimoaind consequently provides a conve-
nient framework of calculation without encountering anygsilarity. This kinematics corresponds
to the special system of coordinates used by X. Ji [1] and AlyRshkin [2] for the derivation of
the GPD formalism. In the DVCS limit &3 — o, the corresponding lepton momenta are given by
2 2

o — (o,o,o, zﬁ—%) and/'M = oM — g, wheregH = (prJr,O,O, 2}%)

(K3) Nonvanishingy™ andg'*™ Kinematics (withm= 0)
The nonvanishing™ andg* kinematics also avoids the singularity in the amplitudeaialtion,
while the photons carry the same order of transverse monaarttae ones in thé@-kinematics (K1).

The corresponding lepton momenta are givervby= (2*, %,O, jf—i) and/H = ¢# — gH, where

2 _ .
o = (* Sp*. %703 2??) and the value of* is determined by'2 = 0.

All of these three kinematics yield identical kinematicavariants such as = %Qz and
u= —?Qz in the DVCS limit asd — 0 andm — 0. The results of both the lepton amplitude
Z({A",A}h) and the hadronic amplitude? ({s,s}{h’,h}) from these three kinematics can be
found in Ref.[11]. The complete DVCS amplitudg’ in Eq. (2.1) is shown in Table 1. Since all
the singular terms of orde@ 2 and &~ are exactly cancelled out in the complete amplitude, we
have takerd = 0 in Table 1. Note in Table 1 that there is an interchangfethe polarization of the
final photon in the result of the ‘1+1’ dim. kinematics in coanigon with the other kinematics, in
which the momenta of photons have transverse componenisisTiemarkable in view of the LF
helicity [13]. To appreciate this point, we draw in Fig. 2 t@in directions of the outgoing photon
with the LF helicityh’ for the two different kinematics: one without any transeersomentum
such as K2 and the other with the transverse momentum of @derch as K1 or K3. One should

1\We have also confirmed the similar interchange of the hglaitplitudes between the kinematics with and without
the transverse momentum of the virtual photon in the casdaia-factor calculation.
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Tw by,

Figure 2: Spin directions corresponding to an LF boost in #hairection only, I.h.s, and one including
transverse parts, r.h.s., from a state with initial spinhie +z-direction. Note that the spin does not align
completely in the latter case.

realize that the LF helicity states are defined for a momemjuhy taking a state at rest with the
spin projection along the direction equal to the desired helicity, then boosting e zldirection

to get the desired/*, and then doing a LF transverse boost (i, = K, + J, [13]) to get the

desired transverse momentuih. Whether the kinematics includes the LF transverse bdsgt (
or not makes a dramatic difference in the spin direction bse&, rotates the spin direction.
Thus, for the I. h. panel of Fig. 2, the spin direction of the hélicity state is opposite (or
antiparallel) to the direction of the photon momentum wtide the r. h. panel of Fig. 2, the
spin directions of the LF helicity state and the Jacob-Wiekdity state [14] are related [13] by

the Wigner functiond,},_’h, (tan*l%m) in the DVCS limit, which becomes unity &3 — «. This

illustrates the correspondence between the results oferidtics withg/ , = 0 and a kinematics
with the transverse momentum of ord@r e.g. in Table 1, the result &f = 1 in K2 corresponds
to the result oY = —1 in K1 or K3 forA’.A = 1,2 ands,s= 1,2. One should note that the
conservation of angular momentum is satisfied in the corafidt amplitudes for ankinematics.
Thus, the calculation up to now plays the role of a benchmarktte discussion of the GPD
formalism as we do below.

3. Reduction of DVCS Amplitudes with GPDs
Rewriting thes- andu- channel hadronic amplitudes (see Egs. (2.2)-(2.3)) as
u(k;s)osu(k;s) = ,"(a;M)e, (M) THY, (K s)ouu(krs) = &7 (d;M)ey ()T, (3.1)
we may neglect an inessential fermion mas® express the tensorial amplitudgg¥ andT,*V as
=K S ek T = Smaky ks, @2)
respectively. Using the identity
VY = gl + g - gty gl Py (33)

and the Sudakov variable#' (+) = (1,0,0,0) andn*(-) = (0,0,0,1), one may expands"’ and
Tu*Y to find the terms proportional ta(k’; s')ii(—)u(k; s) andu(k’; S')ri(—) ysu(k; s) that correspond
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to the nucleon GPDH (x,A2,Z) andH(x,A2, ) defined e.g. in Ref. [1], respectively (her¥ =
(d —g)?). As we mentioned in Section 2 regarding K2, one should ruaed special system of
coordinates without involving any large transverse momenivas chosen in Refs. [1] and [2] to
compute the scattering amplitude in terms of GPDs.

In order to cover the more general kinematics involving dattgansverse momenta such as
K1 and K3, we may expang” (similarly g#) andk* asg* = g*n#(+)+q n#(—)+q,* and
kM = k*nH(+) +k n*(—) with g, ¥ representing the transverse momentum corresponding.to
Form= 0,k =0, andTs*¥ (similarly T,#V) can be expanded as

TV = (KT a4 +a () g, M ()

(K g () +a 1’ (—) +q, VI () — ga ) K S)(-u(k:9
gL (I 4+ G )N (+) + G N (=) + 0, o g (DTK; A yu(kis)] . (34)

Sinceq™ has the highest power @ among the components of momenta, one may just take the
terms proportional t@— as shown in Refs. [1] and [2], i.e.,
q; [{nH()n"(+) +n" () (+) — g* HulK; s)R(-u(k;s)

—igh’@Png (=)ng (+) GIK;)A(—)ysu(k;s) | -

TSHV —

(3.5)

Although this is correct in the frame of reference choseneafsR[1] and [2], one should note that
Eqg. (3.5) cannot provide the full result of the hadronic aitapk in the kinematics involving large
transverse momenta such as K1 and K3, because the polamizatitorss,*(q'; ') ande, (qg; h) in
Eq. (3.1) amplify the contributions neglected in the ter@@mplitudeT#V given by Eq. (3.5) (and
similarlty for T,#V). For example, the coefficient ofK’; S')ri(—)u(k;s) in the s-channel hadronic
amplitudeu(k’; ') &su(k; s) is given by the following four terms:
s [2(kF +a")e (dsh)e (gh) + & (dsh) g, -, (gh)

+e (gh) g, &7 (d;h) —q e " (d;n) €, (gh)]. (3.6)
Since all of the above four terms have the same power3, ane cannot just take the last term
proportional toq~ but must keep all terms together. In other words, the fazation in the tenso-
rial amplitudeTsHY + TyHY cannot hold in general because the polarization veagr&y';h') and
&y(q;h) can amplify the terms neglected in the tensorial amplitudess a special system of co-
ordinates is chosen to avoid the large transverse momenmtatiaf and final photons such as K2.
Thus, we note that the formulation of GPDs on the level of d@resorial amplitude is not general
enough to cover the kinematics with large transverse masrmsmnth as K1 and K3 but is limited to
the special system of coordinates without involving lamgasverse momenta such as K2.

To demonstrate the consequence of taking the reduced adwlihat keeps only the terms
proportional tog~ in the tensorial amplitude as done in the formulation of GRismay take the
following reduced hadronic operators used in the formatatbf GPDs which are defined as the
limits Q — oo of the operators given in Eq. (2.3):

o = E@MYE@h) 1. Gy () 1
SIRed 2pt X Z’ UlRed op* X

(3.7)
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Figure3: Due to the conservation of angular momentum, the left artd dipgrams irs-channel are allowed
and prohibited, respectively.

The J = 0 fixed pole contribution in Eq. (3.7) for point-like scaitey has been discussed in
Ref. [15] along with the universality of this contribution two-photon processes.

Since thegq™ = 0 frame is used [12] in the GPD formalism, we utilize ihkinematics (K1)
for our demonstration [11]. In the expansion of the hard miotme scaleQ, it is important to
retain terms of orderd 1, ...5% as well as order® 1, .. .Q2, as it turns out that not only are the
orderd!-terms cancelled by ordérterms in the convolution o and.7#, but also that the order
Q -contribution of the longitudinally polarized virtual ptum gives a finite contribution in leading
order. Thus, if the contribution of the longitudinal polation of the virtual photon is neglected,
the singular parts do not cancel out. Contrary to the stateimeRef. [12], the contribution of the
longitudinal part is not suppressed by a factp@lcompared to the contributions of the transversely
polarized photons. Consequently, the contribution of tritudinal polarization should not be
neglected in the kinematics K1 and K3, where the photony tamnsverse momenta of ordéx

Moreover, one can easily check the angular momentum ccetsemfor the DVCS amplitude
in theg™ = 0 frame (K1) as shown in Fig. 3. From Fig. 3, one can easily saethe ampltude
of§ =9 =1/2;s; =s; =1/2 andA’ = +1(A’ = —1) is allowed (prohibited). Indeed, as we
discussed in Section 2, our benchmark results of the compiitamplitude shown in Table 1 for
all three kinematics satisfy the conservation of angulanmotum. However, this is not the case
for the reduced amplitudes in the GPD formalism. As we hawvshin Ref. [11], the reduced
amplitudes and the full ones disagree in Kjt" = 0 frame) as well as in K3, although for the
kinematics without any transverse component, K2, the redi@mnplitudes and the full ones do
agree.

Thus, for a correct analysis of the experimental data in DV@® must limit the kinematics
of GPDs to the reference frame where the transverse momeoftuhe virtual photon is not of
orderQ but small or zero, e.g. to the center-of-mass of virtual phand target hadron, or to the
kinematics K2, as the bulk of the GPD discussion [16, 17, &8rs to. Since the operator that
defines the GPDs, e.g:", is not invariant under the transformation from e = 0 frame to the
g™ = 0 frame, the choice of reference frame matters in computied/CS amplitude in terms of
GPDs.
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4. Conclusions

Based on our tree-level calculations of DVCS amplitudes,fiwe that the formulation of
GPDs on the level of tensorial amplitudg' + T,*V is not general enough to cover the kinematics
with large transverse momenta such as K1 and K3, but is lirtitethe special system of coor-
dinates without involving large transverse momenta suckasin K1 and K3, the full hadronic
amplitudes and the reduced ones do not agree, even in theQimi o, which means that the
calculations of the DVCS amplitudes using the GPD cannotusted in this kinematics. In ad-
dition, the contribution of the longitudinally polarizedgrtwal photon is not down by one order in
Q, but even plays the role of cancelling the singular partse Singularities we have found are in
no way connected to the strong-interaction part, but dgtolee to the minus components of the

photon-polarization vectors, meaning that a calculatieyond tree level will encounter the same
singularities.
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