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Pair production in laser fields: finite size effects
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We discuss pair creation in a strong laser background, using lightfront field theory. We show that
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explains the interpretation of laser-stimulated pair production as a multi-photon process creating
pairs of an effective mass.
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1. Introduction

Fifty years since their invention, lasers now reach intensities of 1022 W/cm2, delivering electric
fields strong enough to ionise atoms, in femtosecond duration pulses. The energy density of such
pulses reaches 1010 J/cm3. The next generation of laser facilities will reach even higher field
strengths – the intensity of the Vulcan laser at CLF in the UK will this year be increased by a
factor of ten, and by 2015 the Extreme Light Infrastructure (ELI) project will house a 100PW laser
capable of an intensity of 1024 W/cm2 and a peak electric field of 1016 V/cm [1].

This last value is two orders of magnitude below the critical field strength of QED: this is the
Sauter-Schwinger electric field strength ES ∼ me ∼ 1018 V/m, at which the field becomes strong
enough to pull electron-positron pairs out of the vacuum. The derivation of the Sauter-Schwinger
field strength is based on the assumption of a constant, homogeneous electric field, whereas the
fields of a laser are pulsed and rapidly oscillating, and there are indications that in such fields the
Sauter-Schwinger limit is lowered [2, 3]. The study of finite size effects, stemming from finite
pulse geometry, has therefore received quite some attention in recent years.

These investigations have, mostly, focussed on vacuum pair production in electric fields which
remain spatially homogenous but become time dependent, and have revealed a rich substructure in
the spectrum of the produced pairs [4, 5, 6]. Here, we will extend these investigations to stimulated
pair creation [7]. Since the effects of the magnetic field can become important at high frequencies
[8], we include it by modelling our laser as a plane wave of finite temporal (longitudinal) extent.
The approach is based on strong-field QED, and we will see that our calculations are naturally
suited to lightfront co-ordinates. We begin by reviewing established results concerning particles in
plane waves, and then go on to study some effects of finite beam geometry.

2. Plane waves and the electron mass shift

A laser pulse contains a huge number of photons and will therefore be treated as a classical,
fixed background. We model the laser fields with a plane wave, i.e. a function of k.x such that
k2 = 0, lightlike. We take k.x∼ x+, lightfront time. The plane wave is

Fµν = ḟ j(k.x)(kµa j
ν −a j

µkν) , (2.1)

with j summed over 1 and 2, and a dot is differentiation with respect to k.x (for later convenience).
The polarisation vectors obey k.ai = 0 and ai.a j =−m2a2/e2δ i j, defining an invariant, dimension-
less amplitude a. The electric and magnetic fields are always orthogonal and of equal magnitude,
so both Lorentz invariants constructed from the field vanish identically. One may construct an
invariant T by employing the momentum vector pµ of a probe electron moving in the field [16]:

T =
e2

m2
p.T.p
k.p2 , (2.2)

where Tµν is the energy momentum tensor for Fµν . One may check that T reduces to the electro-
magnetic energy density seen by the electron in its instantaneous rest frame. This leads us to the
question ‘what is pµ?’ Classically, this is found by solving the Lorentz force equation,

d
dτ

pµ =
e
m

Fµν pν , (2.3)
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which is possible here because k.p is conserved and therefore proper time τ may be identified with
lightfront time k.x ∼ x+. Using this, the momentum and trajectory are easily calculated. In the
context of pair production, only plane waves which are of infinite extent in k.x, and are purely
oscillatory, have until recently been thoroughly studied in the literature [12, 13, 14], so let us
specialise to this ‘infinite plane wave’ (IPW) case. Take linear polarisation, i.e. f1(k.x) = sink.x,
f2(k.x) = 0. As the fields oscillate, an electron undergoes rapid ‘quiver’ motion, but the important
quantities turn out to be averages taken over a cycle of the laser. Taking the cycle-average of the
momentum gives the ‘quasi-momentum’ qµ , which, in terms of an initial momentum pµ is

qµ = pµ +
m2a2

0
2k.p

kµ . (2.4)

This is parameterised by the invariant T averaged over a cycle, written a2
0, and which equals a2/2

(a2) for linear (circular) polarisation. a0 parameterises all our intensity effects and is called the
‘dimensionless laser intensity parameter’. It is of O(10) for today’s lasers and will reach at least
O(103) at ELI. Squaring (2.4) one finds the celebrated electron mass shift, q2 = m2(1+a2

0) =: m2
∗

[17]. The relevance of the effective mass is seen when one calculates scattering amplitudes. We
focus on pair production stimulated by a probe photon, momentum k′µ , fired into the laser: this
probe is required because, unlike a pure electric field, a single plane wave cannot create pairs from
the vacuum1, a consequence of both its Lorentz invariants vanishing [19]).

Sparing the details, one finds that in an IPW the S–matrix has the form [12, 13, 14]:

|S f i|2

V T
= ∑

n>n∗0

|Mn|2δ
4(k′µ +nkµ = qµ +q′µ) . (2.5)

This incoherent sum is supported on the conservation of quasi-momentum; each term is therefore
naturally associated with the effective process

γ(k′)+nγ(k)→ e−(q)+ e+(q′) . (2.6)

in which the probe photon, together with n photons of momentum kµ , referred to as ‘laser photons’,
create an electron-positron pair of rest mass m∗. Indeed, the lower limit of the sum in (2.5) is n∗0 =
2m2
∗/k.k′ (found from squaring the quasi-momentum relations), which just says that the number of

laser photons taken from the laser should be sufficient to produce a heavy pair.
The bulk of intuition regarding laser-matter interactions is based on the above (and related)

results: scattering processes are summed over the number of photons taken from the laser, and
the electron acquires an effective mass m∗. Indeed, these results were used to analyse the SLAC
E144 experiment which produced pairs by colliding the SLAC beam against a low intensity laser
[15]. Although confirming nonlinear, or multi-photon, effects, the experiment did not offer an
unambiguous detection of the effective mass [20].

There are some loose ends to be tied up here: what does the ‘laser photon’ number mean, when
the background is classical? Is the prevalence of the effective mass over the rest mass due only to
the fact that the fermions never escape the background field? These issues may be addressed by

1It would be interesting if one could relate this statement to the triviality of the lightfront vacuum [18].
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incorporating the simplest of finite size effects: those due to finite pulse duration, which in our case
means finite extent in lightfront time. Regarding experiment, the assumption of a periodic plane
wave is now hard to justify since a modern laser pulse has femtosecond duration, and contains
an order of 10 cycles of the beam, around 1000 times fewer than in the laser used for the SLAC
experiment. So let us now consider a ‘pulsed’ plane wave and see what becomes of the mass shift
and photon number2.

3. A lightfront approach to finite size effects

Our plane wave is a function of k.x ∼ x+, or lightfront
time. A second laser, or a probe photon, depends on
another lightlike direction, say x− for a head-on colli-
sion. The setup is shown to the left: pairs are produced
where the fields overlap, and the pairs escape the fields
after a finite time. It is really lightfront time which is
relevant here: front times bound the production region,
we will see below that lightfront momentum fractions
are the important objects, and the number of pairs cre-
ated could be calculated from expectation values of the
number operator at front times x+f and x+i (c.f. the cal-
culation in [9] for electric fields in the instant form).
So, laser physics really is lightfront physics.

We now proceed to the scattering amplitude. The calculation is performed in the Furry picture [10]:
the laser field is treated classically and preferably exactly (since Fµν is characterised by a0 > 1, a
perturbative expansion in the field strength is not permissible) while scattered fermions and photons
are quantised and treated in perturbation theory as normal. Again, the most complete treatment is
possible for plane waves. One begins by solving the Dirac equation in the background (2.1), for
which we need to choose a gauge. It is convenient to work in lightfront gauge, so k.A ∼ A+ = 0.
The gauge potential for the field (2.1) is then

Aµ(k.x) = f j(k.x)a j
µ , (3.1)

and the ‘Volkov electron’ solution to the Dirac equation is [21]

Ψ
e−
p = exp

[
− ip.x+

i
2k.p

∞∫
k.x

2eA.p− e2A2 ,

](
1+

e
2k.p

/k /A
)

up ≡ e−ip.x−iIpΓp up , (3.2)

where p is on-shell and up is a free Dirac spinor. The (tree level) amplitude for stimulated pair
production of an electron with momentum p and a positron with momentum p′ can be written in
terms of the Volkov wavefunctions as follows

S f i =−ie
∫

d4x Ψ
e−

p (x)/ε e−ik′.x
Ψ

e+
p′ (x) , (3.3)

2Calculating the pair production rate in a genuine ‘pulse-shaped’ background in which the fields have finite extent
in all directions is challenging, to say the least. See [11] for a recent discussion in the context of nonlinear Compton
scattering, i.e. the crossed process of pair production.
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where k′µ and ε are the momentum and polarisation vectors of the probe photon. The problem
at hand is essentially one dimensional: going to lightfront co-ordinates, the scattering amplitude
reduces to a lightfront Fourier integral over x+, or, for convenience, k.x,

S f i=
1
k+

δ
3(p′+p−k′)

∫
d(k.x)ei(y+y′−x′)k.xM (k.x) , (3.4)

of the function M = ūpΓp /ε Γ−p′vp′ ei(Ip−I−p′ ), with the lightfront three momenta p := (p−, p⊥)
conserved, as follows from (3.2) being an eigenfunction of p. Here we have introduced three boost
invariant lightfront (longitudinal) momentum fractions, y, y′ and x′ which appear through the sum

y+y′−x′ ≡ p+

k+

+
p′+
k+

− k′+
k+

, (3.5)

and which we note are Fourier conjugate to the invariant phase k.x. To progress, one must choose
an explicit Fµν . We are interested in the case of Fµν having compact support P in k.x.

Example 1: a finite wavetrain and the IPW limit.

We begin with a simple and accessible example: assume that Fµν is (almost) periodic and
oscillating within P, so our pulse is a finite wavetrain of N cycles. We will show later that our results
hold for more realistic pulse shapes. With these assumptions, the integrand of (3.4) simplifies. One
finds

S f i=
1
k+

δ
3(p′+p−k′)

∫
d(k.x)ei(ȳ+ȳ′−x′)k.xM(k.x) , (3.6)

where the lightfront momentum fractions in the exponent have become quasi-momentum fractions
for the field in question3, i.e. y≡ p+/k+→ ȳ≡ q+/k+ and ȳ′ similarly. M is periodic and oscillat-
ing. Reducing the integration to a single period and squaring up, one finds

|S f i|2

V T
∼ δ

3(p′+p−k′)

∣∣∣∣ sinNπz

sinπz ∑
s

Ms sincπ(z− s)
∣∣∣∣2 . (3.7)

The N cycles of the beam generate the ratio of sines, while the final sum is a Fourier expansion
of the single cycle contribution. The sum in |S f i|2 is coherent, unlike that in (2.5). Coherent sums
are naturally associated with interference effects, which here are those of a diffraction pattern: the
product of the sin/sin factor and the sinc function is nothing but the intensity distribution of N slit
diffraction. We thus expect a series of ‘peaks’ and ‘troughs’ in the pair production rate, and it is
natural to ask what the peaks correspond to.

The important term is the ratio of sines. Its argument is z ≡ ȳ + ȳ′− x′. This contains the
longitudinal momentum transfer from the probe photon to the pair, as in (3.5), and also the average
longitudinal momentum transfer from the laser to the pair (responsible for the transformation of y

to ȳ etc). Hence, z describes the combined longitudinal momentum transfer. It is clear that the ratio
of sines is peaked when z = n ∈ Z, which just says, multiplying through by k+, that we have peaks
when the lightfront momentum transfer is a multiple of the laser frequency: the peaks are therefore

3The quasi-momenta are not necessarily the same as for an IPW, even in a regular wavetrain, as they acquire
transverse components. This does not alter the following arguments, though, so it is simplest to think of (2.4) as the
definition of qµ for this discussion.
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Figure 1: Triple differential cross section [a.u.] as a function of transverse positron momentum, for N = 1,
2 and 4 cycles. Fixed transverse angle φ = π and half maximum lightfront component p′− = k′−/2. Black
(vertical) lines indicate the IPW result – a delta comb centred on the resonances, corresponding to quasi-
momentum conservation.

a resonance effect. Combining this resonance condition with the delta functions conserving three-
momentum, we see that the peaks have the kinematic support

k′µ +nkµ = qµ +q′µ , (3.8)

which looks just like an integer number of photons producing a heavy pair. Thus, the photon
number and effective mass arise together as a consequence of a resonance effect. Note that when
z = n ∈ Z is interpreted as a photon number, then from (3.4) we see that this is conjugate to phase
k.x, consistent with optics results.

Let us examine the diffraction pattern. For simplicity we look at the triple differential cross
section, with the background field f1(k.x) = sin(k.x) for 0≤ k.x≤ 2πN, zero otherwise, and f2 = 0
for linear polarisation. The field strength has a step function edge, but it keeps things simple for
now: we will shortly smooth everything out. The emission rate is plotted in Fig. 1 for N = 1,2,4
cycles of the laser (corresponding to 4, 8, 16 fs pulse duration). The form of the rate changes signif-
icantly when we go above one cycle, which corresponds to the change from single to multiple slit
diffraction: one can see the appearance of the N− 2 subpeaks characteristic of such patterns.This
is the origin of the oscillatory substructure observed recently in pair production rates [4, 6].

As one takes the number of cycles to infinity, the interference terms drop out of |S f i|2 and
the sum becomes incoherent; only the resonances in the spectrum survive in the IPW limit. The
spectrum collapses to a delta comb supported on (3.8), and the IPW results (2.5), described entirely
in terms of photon number and the effective mass, are correctly recovered. This is illustrated in
Fig. 1 by the vertical black lines, which show the locations of the resonances and represent the
delta comb of the IPW limit: the peaks in the pulsed rate are centred on the IPW results, which
dominate as N→ ∞.

Example 2: smooth envelopes.

It is important to ask what becomes of the interpretation above once we drop the assumption
of periodicity and add an envelope function, such that the pulse profile looks something like that
of Fig. 2, and the field strength vanishes smoothly at the edges of the pulse. A nice model of such
pulses was introduced in [22] and studied in [23]: sticking to linear polarisation, one takes ( f1

or) ḟ1(k.x) = sinv(k.x/2N)sin(k.x) for 0 ≤ k.x ≤ 2πN and zero otherwise, where v describes the
envelope function: examples are shown in Fig. 2. Plotting the pair production rates reveals the

6
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4 Π 8 Π 12 Π 16 Π

Figure 2: Two 8-cycle pulse profiles modulated by sin(x/16) (red, broad) and sin4 x/16 (blue, narrow).

same diffraction-like pattern as for the periodic model above – the spectra feature a series of strong
peaks, with a rich substructure, see Fig. 3. Adding an envelope seems to most strongly affect the
low energy part of the pair spectrum.

Let us now compare these spectra with the IPW results in a little more detail. First, we note
that a significant part of the spectrum lies below the momentum threshold for pair production in
the IPW limit: on our plots this corresponds to the signal to the left of |p′⊥|/m = 1 which is not
allowed by conservation of quasi-momentum. The most interesting effect is that, as shown in the
right hand panel of Fig. 3, the strong peaks of the emission rate do not match those of the IPW
limit. The persistence of the diffraction pattern implies that some preferred momentum remains
in the game, but it is not obvious how one can identify this since periodicity is lost: expressions
for the S–matrix element do not explicitly reveal what average (c.f. the discussion preceding (2.4))
the process is sensitive to. Preliminary investigations into the distribution of the peaks, using an
approximate numerical method to reconstruct the quasi-momentum, indicate that the corresponding
effective electron mass is lowered in more realistic pulse geometries [23].

4. Conclusions

We have given a clear and physical interpretation of the effective electron mass, and its role in
pair production, by employing lightfront field theory. We have seen that pair production in a plane
wave of finite temporal extent is a diffractive process: the emission spectrum can be interpreted
as an interference pattern with a rich substructure. The rate exhibits resonant behaviour when
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Figure 3: LEFT: 12-cycle (48 fs) pulse with sin4 profile. RIGHT: 8-cycle (32 fs) pulse with sin2 profile.
The peaks do not match the IPW delta comb (vertical/black lines), indicating that the effective mass in a
pulse differs from the infinite plane wave m∗.
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the laser averaged lightfront momentum transfer to the pair is a multiple of the laser, or driving,
frequency. For regular pulses with large numbers of cycles, this resonance condition recovers
the IPW kinematics expressed purely in terms of the effective electron mass. Interestingly, the
emission rates indicate that if an effective mass continues to play a role in pulsed pair production, it
is lower than the m∗ of the infinite plane wave. The form, and phenomenological consequences of
the effective mass will be further investigated in a future publication. Another important topic to be
addressed is the development of systematic, controlled expansions which allow one to go beyond
the plane wave approximation and tackle more realistic pulse geometries.
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