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Polyakov action is one of the most widely studied topics ningttheories [1] - [16]. Re-
cently, we have studied this action for the D1 brane in thdaromal gauge (CG), using the instant-
form (IF) of dynamics (on the hyperplanes defined by the weHdet (WS) times® = 1 = con-
stant) [17] - [21] and the light-front (LF) dynamics (on thgperplanes of the LF defined by the
light-cone (LC) WS timeo™ = (T + 0) = constant)[17] - [29]. The LF theory is seen to be a
constrained system in the sense of Dirac, which is in contashe corresponding IF theory,
where the theory remains unconstrained in the sense of Difhe LF theory is seen to possess
a set of twenty six second-class constraints. Further, éiméocmally gauge-fixed Polyako1
brane action (CGFPD1BA) describing a gauge-noninvari@NIj theory (being a gauge-fixed
theory) is seen to describe a gauge-invariant (Gl) theotlgdérpresence of an antisymmetric NSNS
2—form gauge fieldB,3(1,0). Recently we have shown that this NSNSfarm gauge field be-
haves like a Wess-Zumino (W2Z) field and the term involvingstfield behaves like a WZ term
for the CGFPD1BA[9] - [16]. We have also studied [9, 10] thenkiltonian and path integral
formulations[9] -[14] of the CGFPD1BA with and without a $aadilaton field in the IF as well as
in the LF dynamics. In both the above cases the theory is seeaxpected) to be gauge- nonin-
variant (GND[9] - [21], possessing a set of second-classstraints in each case [9] - [21], owing
to the conformal gauge-fixing [1] -[14] of the theory. The CIFLBA being GNI does not respect
the usual (string) gauge symmetries defined by the WS remramation invariance (WSRI) and
the Weyl invariance (WI). However, in the presence of a camis?-form gauge fiel@, it is seen
to describe a gauge-invariant (Gl) theory respecting th@lustring) gauge symmetries defined by
the WSRI and the WI. The IF and LF Hamiltonian and path intefgranulations of this theory in
the presence of the constant 2-form gauge figlg have been studied by us in Refs. [9] - [13].
In the present work, we consider the question of the stringggasymmetries associated with the
Polyakov D1 brane action in the presence of some other bagkgrfields such as thé(1) gauge
field A#(1,0) and the constant scalar axion fi€dr, o).

The PolyakowD1 brane action in a d-dimensional curved backgrobiggl is defined by [1] -
[13]:

§— / Fda (1a)
P = [—;\/—_hhaﬂsaﬁ] (1b)
h = det(h,p) (1¢)
Gap = daX“dBX"nw (1d)
Nuv = diag(—1,+1,...,4+1) (1e)
u,v =0,1,...,(d-1); a,=0,1 (af)

Herec? = (1, 0) are the two parameters describing the worldsheet (WS). Véelots and primes
denote the derivatives with respectit@ndo. T is the string tensionG, is the induced metric
on the WS andX#(t,0) are the maps of the WS into tliedimensional Minkowski space and
describe the strings evolution in space-time [1] - [1@]g are the auxiliary fields (which turn out
to be proportional to the metric tensgy g of the two-dimensional surface swept out by the string).
One can think oS as the action describing massless scalar fieldg" in two dimensions moving
on a curved backgrouni,g. Also because the metric componehts are varied in Eq. (1), the
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2-dimensional gravitational fielt, g is treated not as a given background field, but rather as an
adjustable quantity coupled to the scalar fields [9, 10]. &¢tenShas the well-known three local
gauge symmetries given by the 2-dimensional WSRI and WI[13} as follows:

XH — XH = [XH 4 5XH] (2a)
OXH = [(0aXH)] (2b)
ho® — h9P = [h9B + 5hoF (2c)

Shof = [z Yo, hoF —a,9hP — g,¢PhaY (2d)
hag — [Qlhgg (2e)

Where the WSRI is defined for the two parametéfs= (% (1, 0); and the WI and is specified by
afunctionQ = Q(1,0) [1] - [14]. In the following we, however, work in the so-call®rthonormal
gauge where one sef3= 1 [1] - [14]. Also for the CGFPD1BA one makes use of the fact tha
the 2-dimensional metrib, g is also specified by three independent functions as it is arsgtnc

2 x 2 metric. one can therefore use these gauge symmetries tifebey to chooséy g to be of a
particular form [1] - [14]:

hag = Nagp; haB :— nab (3)

For the IF dynamics we take [1, 2]:

-1 0
-1 0
aB _ paB _
=n ( 0 +1> (46)

with

V—h=/-dethss)= +1 (5)

In LF formulation we use the Light-Cone (LC) variables defifey [1, 2, 3, 7]:

ot :=(1+0) and X*:=(X°+X%/V2 (6)
In this case we take
) 0 -1/2
0 -2
aB ._ paB _
h"" :=n <_2 0) (7b)

with

Voh=,/~detthgs = +1/2 (8)
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Now the actiorSin the CG (in the IF and LF) finally reads [1, 2, 3, 7]:

S / Nd2g (9a)
2N = [(=T/2)][0PXHapX,] (9b)
B=01 and p=0,1i; i=23,..,25 (IF) (9¢)
B=+,— and p=+,—,i; i=23,..25 (LC/FF) (9d)

The action S is the CGFPD1BA. This action is seen to lack the local gaugensgtries. This is

in contrast to the fact that the original acti@had the local gauge symmetries and was therefore
Gl. The theory defined by the actio$", on the other hand describe GNI. This is not surprising at
all because the theory defined 8Y is after all (conformally) gauge-fixed theory and consedjyen
not expected to be Gl anyway. In fact, the IF theory define@bis seen to be unconstrained [9] -
[21] whereas the LF theory is seen to possess afs# second-class constraints [9] - [14]. In both
the cases it does not respect the usual local string gaugestrias defined by WSRI and WI.

We now consider this CGFPD1BA in the presence of a constaskgoaund antisymmetric
2-form gauge fieldB, g studied earlier by Schmidhuber, de Alwis and Sato, Tsewtid Abou
Zeid and Hull and others defined by [1] -[10]:

g — / # da (10a)
L = [LC+ 7P (10b)
SO = PN = {—g] AOPXHI, ] (100)

T a
LB = {_E] [Ne?PBg ] (10d)

A = 1/(1+A?); A= congant (10e)
ap [ 01
g = (_1 0) (10f)
BUB = ng“dBX"BW (109)

0B
Bup = (_Bo> (10h)

B = Bor=—Bio (IF) (10i)

B =B, =-B_, (LC/FF) (10j)
a,8 =01 and p=0,1,i; i=23,..,25 (IF) (10Kk)
a, =+,— and p=+,—,i; i=23,...,25 (LC/FF) (aon

In IF, the above action is seen to possess only one first-classtraint and to possess three local
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gauge symmetries given by the two-dimensional WSRI and the W

XH — XH = [XH 4+ 5XH] (11a)
OXK = [{%(daXH)] (11b)
h?® — ho# = [h9B 1 5haP| (11c)

Shaf = [Z Yo,hP — 9,09 —4,¢ "h“y] (11d)
Bup — Bap = [Bap + OBqg) (11e)
OBy = [{"0uByp] (11f)
hag — [Q]hap (11g)

It is important to recollect here that the 2-form gauge figlg is a scalar field in the target-space
whereas it is a constant anti-symmetric tensor field in thddasheet space. The Hamiltonian and
path integral formulations of this theory under the gaBge O have been studied by us in Ref. [9].

We now consider the string gauge symmetries of the gaugd-fxayakov D1 brane action
describing a gauge-noninvariant theory in the presencdiyfla gauge fieldA, (= Aq(7,0)) and
a constant scalar axion fie@®{= C(1, 0)) and show that the gauge-fixed Polyakov D1 brane action
describing a gauge-noninvariant theory (being a gaugeHixeory) is seen to describe a Gl theory
when considered in the presence of above background fielésal¥s show that the (1) gauge
field Ay (1,0) and the constant scalar axion fi€dr, o) are both seen to behave like the Wess-
Zumino (W2Z) fields and the term involving these fields is seebdhave like a WZ term for the
CGFPD1BA in the presence of an axion field andugii) gauge field. Here the fieldl, is a scalar
field in the target space and a vector field in the WS space anahion fieldC is a constant scalar
field in both the target space as well as in the WS space. Welfaidhe resulting theory obtained
in the above manner describes a Gl system respecting thestisng gauge symmetries defined by
the WSRI and the WI. It is seen that the axion fi€ldnd thel (1) gauge fieldA,, in the resulting
theory behave like the WZ fields and the term involving theslel$i behaves like a WZ term for the
CGFPD1BA. The situation in the present case is seen to belgxamlogous to a theory where
one considers the CGFPD1BA in the presence of a 2-form gaelgkBfig as studied by us in Refs.
[9] - [13], where the fieldB,z behaves like a WZ field and the term involving this field belsave
like a WZ term for the CGFPD1BA [11, 12, 13]. The CGFPD1BA ir thresence of a constant
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background scalar axion fie@and anJ (1) gauge fieldA, is defined by [1] - [14]:

g - / 2 2o L =[N (12a)
SO = AN = [—a AOPXHIEX,] (12b)
LA = [_g [~NCePF,p] (12¢)

01
_ 2\ _ . aff _

A =4/(1+AN?); A=congant; &“F = (_1 O) (12d)
Fap = (GaPg—0pAq); f=Fo=—Fou(lF);f=F._=—F_,(FF) (12e)
a, =01 and u=0,1i; i=23,....25 (IF) (12f)
a,=+,— and pu=+,—,i; i=23,..,25 (LC/FF) (129)

Now the matrix of the Poisson brackets of the constraifits seen to be singular implying that the
constraints¥; form a seif first-class constraints and that the theory describe8; by a Gl theory
[9]-[21]. It is indeed seen to posses three local gauge symesgyiven by the two dimensional
WSRI and the WI defined by [1]-[14]:

XH — XH = [XH 4 5XH] (13a)
OXH = [{9(daXH)] (13b)
haB — hoP = [h9B 1 3haF| (13c)
S8~ [{Yoh™ — 0,0 WP — 3,0PnY (13d)
Ag — Ag = [Ag+ 5Ag] (13e)
OAs = [(%0aAg) (13f)
C — Cq =[C+&C] (13g)
6C = [090,C] (13h)
hag — [Qhgp] (13i)

The above theory is thus seen to be Gl possessing the thiaegmege symmetries defined by the
two-dimensional WSRI and the WI in both the IF and LF dynamics

In conclusion, the Polyakov D1 brane action in a d-dimerali@urved backgrounti, g de-
fined by Sis Gl and it possesses the well-known three local string gaygnmetries. However,
under conformal gauge-fixing, the CGFPD1BA is no longer Geégsected and it also does not
possess the local string gauge symmetries being a gaugktfigery. However, this GNI theory
when considered in the presence of a constant backgroutat agéom fieldC and arJ (1) gauge
field Ay it is seen to become a Gl theory possessing the three logaj siauge symmetries. The
scalar axion field and theU (1) gauge fieldA, are seen to behave like the WZ fields and the term
involving these fields is seen to behave like a WZ term for ti&=€D1BA, which in the absence
of this term is seen to posses a sésecond-class constraints and consequently describédl a G
theory which does not respect the local string gauge synieseffhe situation in the present case
is analogous to a theory where one considers the CGFPD1B#eipresence of a constant 2-form
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gauge field3,g which behaves like a WZ field and the term involving this fietthaves like a WZ
term for the CGFPD1BA [11, 12, 13].

| express my very sincere thanks to Professor Vicente VamidPaofessor Joannis Papavassil-
iou and all other Organizers of the Workshop for providingeayvstimulating environment during
the Workshop.
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