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Momentum and position variables in light-front
Hamiltonians and wave functions
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Momentum variables p = xP+ k are not simply related through a Fourier transform to the space-
time position of particles on the LF because momentum component + is only positive and x is
limited to the range between 0 and 1. Nevertheless, x and k can be handled in a way which
leads to visualization of non-local renormalized LF Hamiltonian interaction densities and wave
functions in position representation. The same way of handling x and k also shows how local
interactions emerge from non-local renormalized Hamiltonians when the renormalization group
scale parameter of an effective theory tends to infinity.
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Momentum and position variables in light-front Hamiltonians and wave functions

1. Introduction

Light-front quantization formalism is typically applied to quantum field theory (QFT) using
momentum variables, i.e., using a Fock space whose basis is built by applying creation operators of
particles with definite momentum components p+ and p⊥ (in conventional notation, where x± =
x0± x3 and LF hyperplane in space-time is defined by condition x+ = 0) to a state of vacuum.
For example, a constituent momentum p in a proton of momentum P is typically parameterized
by writing p = xB jP + k, as in the infinite momentum frame [1, 2, 3, 4, 5, 6], where xB j denotes1

the fraction p+/P+ and k has only ⊥ components different from 0. Position representation using
quantum fields as functions of x− and x⊥ on the LF is rarely used. The trouble with going to
position variables can be seen by looking at two equations,

ψ̂(x⊥) =
∫

d2k⊥ eik⊥x⊥
ψ(k⊥) , (1.1)

ψ̂(x−) =
∫ 1

0
P+ dxB j eixB jP+x−/2

ψ(xB j) , (1.2)

which relate probability amplitudes (wave functions) in momentum and position variables. While
⊥ momentum is integrated from −∞ to +∞, the + momentum is integrated only from 0 to P+, the
total available P+ being conserved by the dynamics. Eq. (1.1) is similar to the Fourier relationship
known in the instant form (IF) of dynamics, while Eq. (1.2) is odd and seems to exclude thinking
in terms of localized positions of particles on the LF in direction of x−, despite that canonical
field-theoretic analysis is possible [7, 8].

The issue of localization of particles in x− arises when one attempts to construct renormalized
quantum field theory on the LF using power-counting to identify all possible interaction terms [9].
For example, when one attempts to introduce a confining potential, the question arises how this
potential should depend on the LF position variables. There is also an intriguing recent discovery
[10] that wave functions of hadrons in LF QCD may be encoded using ideas based on AdS/CFT du-
ality. Strictly speaking, the duality attempts to identify a local (conformal) QFT in a 4-dimensional
position space as a boundary region of a richer theory in a 5-dimensional AdS space. It has been
suggested [11, 12, 13] that in theories such as QCD, in which scale invariance is broken, the 5th
dimension should be understood as corresponding to a renormalization group (RG) scale parame-
ter. In this context, the question arises [14] if and how the hypothesis of connection between the
5th dimension and RG parameter can be verified using the RG approach of the type outlined in
Ref. [9] in LF QCD. However, in order to have a chance of discussing a renormalized LF QFT in
4 dimensions a la [9] and extend the discussion to 5 dimensions using appropriate RG procedure,
one needs a clear concept of how the renormalized picture of quanta in momentum representation
translates to position space. This is needed to investigate structure of corresponding Hamiltonian
densities in position space and finding out if they can correspond to Lagrangian densities that are
used in duality arguments. The connection between momentum and position representations in LF
dynamics is the subject of this note. Explanation of elements used in the following discussion can
be found in [15].

We first discuss the structure of renormalized Hamiltonian interaction densities on the LF.
They are non-local and the width of their non-locality on the LF hyperplane in space-time is pa-

1Symbol x has subscript B j to distinguish the momentum fraction from x reserved here for position variables.
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Momentum and position variables in light-front Hamiltonians and wave functions

rameterized by 1/λ , where λ is the RG scale parameter with dimension of momentum. Then we
explain on a generic example of a three fields vertex how locality emerges when λ → ∞ despite
that momenta p+ of particles in LF dynamics are limited to a finite interval instead of extending
from −∞ to +∞, as it happens in the case of pz in the IF of dynamics. The Hamiltonian densities
are eventually related to wave functions and we conclude with general comments regarding the
resulting structures.

2. How locality emerges in renormalized LF Hamiltonians

How locality emerges in renormalized LF Hamiltonians is addressed here using renormaliza-
tion group procedure for effective particles (RGPEP) [15]. The starting point is a local canonical
theory. RGPEP generates a family of Hamiltonians parameterized by λ , and it is designed so that
λ is a momentum width of form factors in interaction vertices. Canonical theory with counterterms
corresponds to λ = ∞. Physically important examples of canonical Hamiltonian interaction terms
are given by integrals of their densities over the LF hyperplane, HI =

∫
d3xHI(x). For example,

H (x) f ermion−gaugeboson = g : ψ̄(x) 6A(x)ψ(x) : , (2.1)

H (x) f ermion−scalar boson = g : ψ̄(x)φ(x)ψ(x) : , (2.2)

H (x)non−abeliangaugebosons = g : Tr ∂µAν(x) [Aµ(x),Aν(x)] : , (2.3)

and all fields have the same space-time argument.2 From these local densities, application of
RGPEP renders at scale λ non-local interactions of the form

Hλ I =
∫

d3x1 d3x2 d3x3 Hλ I(x1,x2,x3) , (2.4)

where the integrations extend over the LF. Instead of dealing with different kinds of fields sepa-
rately, we introduce here a generic field ψ(x) and assume for simplicity of discussion that it is a
Hermitian scalar field. In this notation, a non-local three fields interaction term at scale λ reads

Hλ I(x1,x2,x3) = gλ f̂λ (x1,x2,x3) : ψλ (x1)ψλ (x2)ψλ (x3) : , (2.5)

where gλ is an effective coupling constant, f̂λ (x1,x2,x3) is the RGPEP form factor in position
space, and ψλ (x) is a quantum field operator for effective particles (see below).

RGPEP introduces the form factor f̂λ in a way that can be illustrated in first-order perturbation
theory in a specific version using beautiful Wegner’s equation [16]. One uses parameter s = 1/λ 2

and writes the equation for Hs = H0 +HIs as (the subscript s is dropped)

d
ds

H = [[H0,H],H] , (2.6)

while the initial condition for s = 0, or λ = ∞, is given by the matrix of canonical Hamiltonian
with all due counterterms, H(0) = Hcan +CT . Keeping only linear terms in the interaction on the
right-hand side, [[H0,H],H] = [[H0,HI],H0] + O(H2

I ) ∼ −H2
0 HI + 2H0HIH0−HIH2

0 , one obtains

2The densities contain constrained field components that are not determined locally even in free field theory, but the
expressions one obtains in terms of the complete free fields in the listed examples, are local.

3



P
o
S
(
L
C
2
0
1
0
)
0
0
3

Momentum and position variables in light-front Hamiltonians and wave functions

an elementary set of equations for matrix elements of H in the basis built from eigenstates of H0,
d
ds HImn ∼−(Em−En)2HImn, with a simple solution

HImn(s)∼ e−s(Em−En)2
HImn(0) . (2.7)

In the IF of dynamics, this result amounts to multiplication of interaction vertices by the form
factor fλ = e−(∆E/λ )2

, where ∆E = Em−En denotes the change of free energy across the interaction
term. In full RGPEP in LF dynamics, this result translates [15] to a form factor fλ = e−(∆M 2/λ 2)2

,
in which ∆M 2 denotes the change of invariant mass squared of interacting particles across the
interaction vertex.

The LF RGPEP equations are actually set up using a unitary rotation of creation and annihila-
tion operators for canonical, point-like particles into similar operators for effective particles of size
1/λ . Thus, if a canonical interaction term has the structure corresponding to gψ3 theory

HI = 3g
∫

[p1 p2 p3] (a†
p1

a†
p2

ap3 +h.c.)2(2π)3
δ

3(p1 + p2− p3) , (2.8)

the renormalized non-local term of first order in the effective coupling constant has the structure

Hλ I = 3gλ

∫
[p1 p2 p3] fλ (a†

λ p1
a†

λ p2
aλ p3 +h.c.)2(2π)3

δ
3(p1 + p2− p3) , (2.9)

where fλ = e−[(p1+p2)2−p2
3]

2/λ 4
. Note that operators a = a∞ are changed to aλ . In order to see the

corresponding non-locality in position variables on the LF hyperplane, we need the notation for
quantum fields that is valid for all values of λ [15]. In this notation,∫

[p] =
∫ +∞

−∞

d p+

4π|p+|

∫∫ +∞

−∞

d2 p⊥

(2π)2 , (2.10)

the effective quantum field is written as ψλ (x) =
∫
[p]aλ p e−ipx, and one takes advantage of the

identification aλ −p = a†
λ p for positive p+. The standard commutation relations take the form

[aλ p,a
†
λq] = 2p+(2π)3δ 3(p + q) and [ψλ (x),∂ +ψλ (y)] = iδ 3(x− y). Now, using the inverse ex-

pression for an annihilation operator for an effective particle with a definite momentum in terms of
a quantum field as a function of position variables on the LF,

aλ p = |p+|
∫

d3xe+ipx
ψλ (x) , (2.11)

RGPEP allows one to arrive at the following result. If a canonical Hamiltonian interaction term is
of the form

HI = g
∫

d3x : ψ
3(x) : , (2.12)

then the renormalized Hamiltonian interaction term of the first order in the effective coupling con-
stant at scale λ is of the form given in Eqs. (2.4) and (2.5) with

f̂λ (x1,x2,x3) =
∫

[p1 p2 p3] fλ |p+
1 p+

2 p+
3 |2(2π)3

δ
3(p1 + p2 + p3)e+i(p1x1+p2x2+p3x3) . (2.13)

In these expression, all momentum variables, including p+, are integrated from −∞ to +∞.
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It is clear that if fλ in Eq. (2.13) approaches 1 for λ →∞, this limit renders a local interaction
with f̂∞(x1,x2,x3) = δ 3(x1− x3)δ 3(x2− x3). The reason is that one integrates a plain wave over
all values of momenta. However, the form factor fλ in Eq. (2.9) was defined in terms of invariant
masses of particles with positive momenta p+ that were limited by momentum conservation, p+

1 +
p+

2 = p+
3 , and thus p+

1 and p+
2 ranged only from 0 to p+

3 . The key question is what function fλ

appears in Eq. (2.13).
The answer [15] can be stated using a change of variables such that p3 =−P,

p+
1 = ζ P+ , p⊥1 = ζ P⊥+κ

⊥ , p−1 =
p⊥2

1 +m2

ζ P+ , (2.14)

p+
2 = (1−ζ )P+ , p⊥2 = (1−ζ )P⊥−κ

⊥ , p−2 =
p⊥2

2 +m2

(1−ζ )P+ , (2.15)

and all components of momenta p1, p2, and p3 range from −∞ to +∞. Then, fλ in Eq. (2.13) is
given by the same formula as in Eq. (2.9), namely fλ = e−(∆M 2/λ 2)2

, except that

|∆M 2| =
[

κ⊥2 +m2

ζ (1−ζ )
−m2

]
1+ |ζ |+ |1−ζ |

2
(2.16)

and−∞ < ζ < +∞. Note that for ζ in the range between 0 and 1 one has ζ = xB j and 1+|ζ |+|1−ζ |
2 =

1. The full answer for f̂λ (x1,x2,x3) reads

f̂λ (x1,x2,x3) =
∫ d3P

2(2π)3

∫ +∞

−∞

dζ |P+|
2(2π)

∫ d2κ⊥

(2π)2 fλ e−iY , (2.17)

where Y = (ζ P+κ)x1 +[(1−ζ )P−κ]x2−Px3 and fλ = e−(|∆M |2/λ 2)2
. The form factor fλ tends

point-wise to 1 when λ tends to ∞ and this is how one obtains a local theory from LF Hamiltonians
renormalized using RGPEP.

3. Relationship between non-local vertices and wave functions

The wave function for a bound state of two constituents at scale λ with total momentum P,
denoted by ψλP, two-body propagator G0, and bound-state vertex function φλP, are combined in
the formula ψλP = G0 φλP. The simplest relationship between a bound-state vertex function and
a Hamiltonian interaction term is obtained in the case of factorized interactions. In this case, the
bound-state wave function in momentum space is a product of an energy denominator and a factor
from the interaction Hamiltonian. Field-theoretic models that exhibit such relation are of the type
of the Lee model [17], including its LF counterparts [18]. Using this analogy, the three fields
renormalized interaction Hamiltonian term described in Section 2 can be looked at in position
space as a vertex function for a bound state of particles 1 and 2 [15]. In what follows, particles 1
and 2 are considered different from each other but have equal masses m and particle 3 is considered
to be their bound state of the same mass m. This allows us to take advantage of results described
in previous sections for a single field ψ . When the bound state has momentum P, which means
definite P+ and P⊥, its vertex function has the form

φλP(x1,x2) = 3gλ

∫
d3x3 f̄λ (x1,x2,x3)e−iPx3 , (3.1)
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where f̄λ (x1,x2,x3) is the part of f̂λ (x1,x2,x3) that results from limiting the integration range in it
to positive P+ and ζ between 0 to 1. The factor 3 in front is kept here because it appears in Eqs.
(2.8) and (2.9) in the Hamiltonians.

The resulting vertex functions take simple forms in two special cases. In one case, masses
of particles 1 and 2 are negligible, which means that λ � m→ 0 and one considers a situation in
which two practically massless partons form a bound state. In this case one obtains

φλP(x1,x2) = 3gλ

(
λ

4π

)2

P+ e−iPR
∫ 1

0
dzz(1− z)e−i(z−1/2)Pr− 1

4 z(1−z)λ 2r⊥2
, (3.2)

where r = x1− x2 and both x1 and x2 are on the same LF with x+ = 0. R = (x1 + x2)/2, since we
consider here particles 1 and 2 of equal masses. In the other case, the constituents are considered
heavy, which means that λ . m, and the resulting vertex function corresponds to a constituent
model of a meson. In this case, it has the form

φλP(x1,x2) = 3gλ

(
λ

4π

)2

P+ e−iPR C(λ/m) e−
λ4

96m2

[
( Pr

2m)2
+r⊥2

]
, (3.3)

where C(λ/m) is a number [15]. These vertex functions exhibit dependence on two invariants, Pr
and r2, in a general form of φλP ∼ P+ λ 2 e−iPR φλ (Pr,r2) valid for r+ = 0. Note that the RGPEP
scale parameter λ enters the vertex in different ways in ultra-relativistic and non-relativistic cases,
since in the latter case the particle mass parameter contributes to the relative motion wave function.
The motion of a bound state as a whole is described fully relativistically and in the same way in
both cases, by a plane wave.

4. Conclusion

One can visualize non-local renormalized interaction Hamiltonian densities for QFTs on the
LF using functions of space-time co-ordinates x− and x⊥ that can be interpreted as positions of
constituents of bound states despite that momentum variables p+ = xP+ are not simply related
through a Fourier transform to position variables. A wave function of a bound state of momentum
P depends on invariants Pr and r⊥, where r denotes the relative position of the constituents on the
LF. Thus, for example, when constructing potentials in LF QCD a la [9], one needs to consider
products Px instead of only p+x−. The RGPEP scale λ enters the relative motion wave functions
in different ways for massless and massive constituents. The limit λ → ∞ takes a renormalized
non-local interaction to a local one.
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