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1. Motivation

The gluon propagator of Landau gauge QCD has been shown to bevippsitlating, see
e.g. Ref. [1] and references therein. This especially implies that the onergitate (treated as
a physical state in perturbation theory) belongs to the states of negativeindhe indefinite-
metric state space of Yang-Mills (YM) theory. As such it can be identified wihrent state in a
BRST gquartet whose other members, however, have to be non-pé¢isteriba. bound, states. In
the following we will identify possible members of this quartet and describeategly to provide
evidence for their role in the formalism of covariantly gauge-fixed YM thedir successful this
may provide a detailed picture of the kinematical aspects of gluon confinemémé Landau
gauge. For the quark propagator the situation is less clear. Neverth®jefgdlowing the same
strategy we want to contribute to a clarification whether quarks are al#ivitpsiolating.

2. The perturbative BRST quartet mechanism

The perturbative BRST quartet mechanism is the generalization of the -Blgatker mecha-
nism [2, 3] to YM theories, for a concise modern treatment see also [FHe].underlying idea is
that the gauge condition

oHAL =0 (2.1)

as formulated in classical physics cannot be elevated consistently to mmam®ndition in Quan-
tum Field Theory. The correct treatment is instead to define within the spatlegopantum states
of QED a physical subspace which is then given by the kernel of thmtm@“Aff) constructed
from gH A, by projection on positive energies. To be concise: The physical state spntains all
stategW) which fulfill

FAL Wy = 0. (2.2)

These physical states contain then the longitudinal and the time-like photomghai their re-
spective contributions precisely cancel. Therefore there is no cotiribaf unphysical states in
the Smatrix. Due to the Minkowski metric it is unavoidable that in covariant gatigesime-like
photon states are negative-metric states, and the total state space is atéanediric state space.

Why then keeping the time-like and the longitudinal photon in the formalism if thegetan
all physical states? If one includes quantum fluctuations we need a tooltd them correctly.
E.g. in perturbation theory in non-relativistic quantum mechanics one injects aletarget of
states ite. a “one”) to obtain the correct formulae. The analogue in relativistic quariteld
theory are loops in Feynman diagrams: They describe the quantum fluogjadiad in order to
count correctly one has to inject again a complete set of states, or glotimgwise, one has to
sum over the propagators of all fields in the formalism, even the unphysies. This way of
counting is illustrated in Fig. 1.

The gauge fields of YM theories (called generically gluons in the followingpalgh the for-
malism, of course, is valid for all YM theories and not only the Strong Intemas) are self-
interacting. Especially the fact that transverse gluons may scatter into Idimgitiand time-like
ones does not allow a straightforward generalization of the Gupta-Bleelehanism. However, on
a purely perturbative level the cancellation mechanism is only slightly more lezaten: Instead
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Figure 1: An illustration of the Gupta-Bleuler mechanism in covatigigauge fixed QED.

of two respective states four do cancel against each other. Intordescribe this so-called quartet
cancellation mechanism we discuss first the elementary BRST quartet j@jin\the Faddeev-
Popov quantization of QED one can (by simply ignoring the fact that thetgllesouple from the
gauge bosons) also formulate the elementary BRST quartet [5]. Thissreswof course, the can-
cellation of time-like and longitudinal photons as in the Gupta-Bleuler mechanisnon-Abelian
gauge theories the elementary BRST quartet takes care of the canceltdiogitudinal and time-
like gluons as well as ghosts and antighosts in all physical states. Heretnarks are in order:
First, the elementary BRST quartet is also valid in the limit of gauge couplirg0. Therefore
the perturbative BRST quartet mechanism in YM is onlynafold duplication of the single can-
cellation mechanism in QED [5] witim being the dimension of the adjoint representation of the
gauge group. Second, due to the nature of the BRST transform oeendbdirectly consider the
longitudinal and time-like gluons but linear superpositions of them, the fatwasp., backward
polarized gluons, semg.Chapter 16 of Ref. [4] for a definition of these states.

The reason for building quartets is related to the nilpotency of the BRS Tidramstion: Every
non-singlet state can then produce only one further state when the BR&Jewperator is applied,
making thus a doublet. It proves useful to form quartets. This is dortethatthe Faddeev-Popov
charge conjugated state of the daughter state in this doublet is used gsaa@nidstate which under
BRST generates the 2nd daughter and thus completes the quartet. Ttractmmsmechanism is
illustrated in Fig. 2, and we will return to it several times in the following.

To highlight the nilpotency of the BRST transformation we will work in a reprgation with
Nakanishi-Lautrup field8® which becomes on-shell identical to the gauge fixing conditih-
(1/&) duA; whereé is the gauge parameter of linear covariant gauges. To memorize the BRST
transformationdg one may picture it as a kind of gauge transformation with a constant ghlokst fie
as parameter:

A, = ZsDiC°A dsd = —igt®Z1¢*qA , 2.3)
5c? = —IfZ; PCA,  Fpl =B, %B? =0, '
WhereD‘f}b is the covariant derivative. The parameielives in the Grassmann algebra of the ghost
fields c® and carries ghost numbBk, = —1. Z; andZ; are the ghost-gluon-vertex and the ghost
wave function renormalization constants. It has been shown that in LayalayeZ; = 1 [7].
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Figure 2: An illustration of the construction of a BRST quartet.

In a next step one follows the construction of Noether’s theorem to el@iBRST charge
operatorQg. It generates a ghost number graded algebra on the fi@jds= {iQg, ®P}. Defining
the ghost number operatQ; one obtains the algebra

Q% - 0 9 [iQC7 QB] - QB 9 [QCyQC] - 0 . (24)

It is complete in the full and therefore indefinite metric state space of a YM yhéldre BRST
cohomology is then constructed as follows: The semi-definite physicgbaab¥eQg is defined
on the basis of this algebra by those states which are annihilated by the BR&EQg, Qg|Y) =

0. SinceQ3 = 0, this subspace contains the spac@kof the so-called daughter sta®g|) (cf.

Fig. 2), which are images of their parent states in the indefinite metric state. shahysical (.e.

positive-metric) Hilbert space is then obtained as the quotient space ishlnce classes:

' (Qg) = KerQg/ImQp . (2.5)

This Hilbert space is nothing else than the space of BRST singlets. All statesther BRST
singlets or belong to quartets, this exhausts all possibilities [6]. Here akeasar order: Had
we required onlyQg|y) = 0 half of these metric partners had been eliminated fronS-aflatrix
elements, leaving the unpaired daughter states of zero norm which domabate to any ob-
servablecf. Fig. 2. However, from a mathematical point of view it is more satisfactory tarreta
only positive-norm states in the physical state space. Note furthermdréhéhparent-daughter
states of opposite Faddeev-Popov charge possess non-vanishingetestrents (which are usu-
ally normalized to one) [6]. This elucidates why quartets and not doubletscenrsidered: These
non-vanishing matrix elements are essential in the cancellation mechanism.

As BRST is a symmetry and the BRST charge oper@gcommutes with the Hamiltonian
the daughter state is degenerate with the parent State:

HIY) = E[¢) = HQs|Y) = QeH|Y) = EQs|Y). (2.6)

And as the Landau gauge Hamiltonibhis ghost-antighost symmetric all members of a BRST
quartet are degenerate.

1We thank Dan Zwanziger for pointing this out to us.
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The elementary quartet consists of the asymptotic states related to the bhekddorward
polarized gluons as well as the ghost and the antighost [8, 6]. Heredglaon polarization and
the antighost provide the parent states, the orthogonal gluon polariaaticthe ghost the daughter
states. In all physical states the contribution of this quartet cancels strnigtljodhe algebra (2.4),

a detailed description is given in Sect. 4.1 of [6]. The correspondingtnastion of perturbative
“multi-particle” BRST quartets follows straightforwardly and is illustrated in FAg.To fix the
notation: We will call the negative norm state of Faddeev-Popov chdrge start with the 1st
parently. Acting with the BRST charge operatQg one obtains the 1st daughter. The Faddeev-
Popov charge reflected state of the 1st daughter provides the 2nat.pAming on it with Qg
provides the 2nd daughter with again has then Faddeev-Popov dtarge

3. Thenon-perturbative BRST quartet mechanism

Within perturbation theory the transverse gluons belong to the Hilbert spefoeed by the
BRST cohomology. However, this is in open conflict with the observed cenfent of gluons.
Therefore it has been conjectured already in the seventies that theetrsmgluons are also part
of a BRST quartet [8]. This property is then in turn believed to be an impaspect of gluon
confinement [9]. Somewhat later it has been observed [10] that them®isng of gluons (which
is a very welcome property as it explains asymptotic freedom) is already pethebative level
in conflict with the positivity of the gluon spectral function. As stated aboeeetlis no doubt any
more that the transverse gluons of Landau gauge QCD are positivity viplatiee.g. Ref. [1].

An inspection of Fig. 2 implies that “one-transverse-gluon” states areTBBent states.
Their respective daughters, however, cannot be the elementarygtmst” states because these
are members of the elementary quartet. From eq. (2.3) it immediately follows éhastlaughter
state of an “one-transverse-gluon” state needs to have the field cﬁgféﬁ%ﬁcb. For every “one-
transverse-gluon” state there should occur exactly one degenetgjfisteiastate. This implies the
existence of a ghost-gluon bound state in the adjoint representatioririlfijs sense the resulting
BRST quartet is strictly non-perturbative because the formation of bstatels cannot be described
with perturbation theory. The Faddev-Popov charge reflected 2edhipstate is then an antighost-
gluon bound state. In this context Landau gauge provides an adveagagmmpared to general
linear covariant gauges: In the lin§it— 0 the formalism becomes ghost-antighost-symmetric, and
thus the existence of a ghost-gluon bound state implies the occurrenceegénalate antighost-
gluon bound state with same quantum numbers. Even having then the 2md, pheeBRST
transformation (2.3) leaves then three possibilities for the 2nd daughtérost-gntighost bound
state, a ghost-antighost-gluon bound state, or a bound state of two mliffgvelarized gluons.

Besides the almost trivial observation that, if a BRST quartet is genergtgddrks it can
only be a non-perturbative one, containing a ghost-quark bound satst alaughter not much
is known about BRST quartets generated by quarks. It is also unkmdwether quarks violate
positivity. Although for light quarks dynamical chiral symmetry breakingd&or heavy quarks
explicit chiral symmetry breaking) determines the infrared behaviour ofjtiaek propagator the
analytic structure of the quark propagator is highly sensitive to details intagaluon vertex,
seege.g, Ref. [12]. The quark-gluon vertex for light quarks is, on the otlerd) also very strongly
influenced by dynamical chiral symmetry breaking [13, 14, 15]. The rmgassration for quarks
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related to chiral symmetry breaking depends strongly on details of the dysakiviicich mecha-

nism then guarantees that the corresponding bound states are @ggevidr the quark states is
completely unknown. We therefore hope that an investigation of nonfpative BRST quartets
at least partially will help to resolve these questions.

4. Propertiesof ghost-gluon bound statesfrom infrared Landau gauge YM theory

By now quite some information on the infrared behaviour of Landau gaudethéory is
available. Especially, in the deep infrared general properties hanedeeleiced by employing func-
tional equations. Dyson-Schwinger equation studies have been edtndea previous analysis
of gluon and ghost propagators [16, 17, 18, 19, 20] to all Yang-Méltex functions [21, 22, 23].
Functional Renormalization Group Equations allow a further restriction orsdhdion for the
Green’s functions: There is one unique scaling solution with power lanthéGreen’s functions
[24, 25] and a one-parameter family of solutions, the so-called decowgdingons. The latter are
infrared trivial solutions which possess as an endpoint exactly the gaallntion characterized by
infrared power laws. Numerical solutions of the decoupling type (thdledcanassive solution”)
have been published in [26, 27] and references therein. A rectitediedescription and compar-
ison of these two types of solutions has been given in Ref. [28], sedRaffso [29, 30, 31, 32].
Most lattice calculations of the gluon propagator favor a decoupling solutiowever, in Ref. [33]
it has been suggested that the infrared behaviour of the Greentdiumeay depend on the non-
perturbative completion of the gauge.

The scaling solution respects BRST symmetry whereas every decoupligpsdreaks it
[28], although very likely only softly. Being very strictly, the analysis asganted below will be
only valid if the scaling solution is a correct one. The situation is, howewsras severe as it
seems. First, if the conjecture of Ref. [33] is correct it is sufficient tmy one non-perturbative
completion of Landau gauge with scaling solution exists to make the analysid.dflRewell-
founded. Second, even if only decoupling type of solutions were cioare extended BRST-like
nilpotent symmetry is likely to take the role of the BRST symmetry [37], or the sBSB sym-
metry breaking can be treated as spontaneous symmetry breaking [8&}|sseRef. [39] and
references therein, as well as the discussion below. It is important liner¢laat all arguments
about infrared dominance of diagrams stay correct. The numerical valaaliagram which is
infrared leading in the scaling solution will be large in a physically acceptaaeupling solution.

All one-particle irreducible Green’s functions in the scaling solution in the kiieg case with
only one external spacelike scgé — 0 obey a simple power law. For a function wittexternal
ghost and antighost as well asgluon legs one obtains:

rn,m(pZ) ~ (pZ)(N— )K (4.2)

Hereby the best known value gfis calculated from truncated equations and is giver by0.595
[18, 19]. The above solution fulfills all functional equations and all Stavaylor identities. It
verifies the hypothesis of infrared ghost dominance [34].

As already emphasized gluons violate positivity [1, 12]. For the scalingisolthis can be
immediately deduced from the fact that for this solution the gluon propagatishes at zero
virtuality, p> = 0, with an exponentR— 1. It leads to an infrared diverging ghost propagator
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with exponent—k — 1 as well as infrared diverging three- and four-gluon vertex funstigrBk
and—4k, respectively). A further important property of the scaling solution is tifrawiad trivial
behaviour of the ghost-gluon vertex which is in agreement with genayahsnts [7, 19].

The ghost-gluon bound state is looked for in the ghost-gluon scatterimglkefo this end
we want to truncate this quantity to the infrared leading term. We use the MATATE®A pack-
age DoDSE [35, 36] to derive the diagrammatic expressions for the E§gsbwinger equation of
this four-point function. A diagram-by-diagram infrared power counisiperformed by attribut-
ing anomalous infrared exponents to the internal legs and vertex functioghost propagator
provides a—k, a gluon propagator ak? the vertex functions the powers cited above. It is some-
what lengthy but straightforward to verify that in the scaling solution theanefit exponent of the
ghost-gluon scattering kernel isk. More important, the infrared power counting also provides
the infrared leading terms.

With two different fields involved there are two distinct possibilities for the @ySchwinger
equation according to which leg one puts the bare vertex. Placing the &dex ¥o a ghost leg
provides a consistent infrared counting [11].

Figure 3: Graphical representation of the gluon-ghost Bethe-Satpsguation. Crosses denote dressed
vertices.

The truncation process for the diagrams on the r.h.s to be kept is: It sbountdin the one-
particle irreducible ghost-ghost-gluon-gluon four-point function anchr> 5-point function, it
should be infrared leading, and the interaction shall take place in the ghwst-channel. This
leaves two diagrams: One with two ghost and one gluon propagator onahteres. This is
effectively a ghost exchange. And another one with two gluon and loo&t gpropagator on internal
lines. This is a gluon exchange. Note that this diagram is infrared leadoaybe in the scaling
solution the fully dressed three-gluon vertex is infrared divergent.
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Assuming the existence of a bound state as well as employing the usual destthompof the
(ghost-ghost-gluon-gluon) four-point function into Bethe-Salpeterldmges and performing the
expansion around the pole (sag.Sect. 6.1 of Ref. [40]) one arrives at the Bethe-Salpeter equation
depicted in Fig. 3. Using the propagator parameterizatiomesgpRef. [12], the ghost-gluon vertex
of Ref. [41], and the three-gluon vertex of Ref. [42] one can @ea\self-consistent equation for
the corresponding Bethe-Salpeter amplitude containing otherwise onlynkmoantities [11]. The
decisive property of the kernels of this Bethe-Salpeter equation areh&aipper diagram of the
r.h.s of Fig. 3 the kernel is well represented by

a%"(r?)/r2  with agh(rz)—iGz(rz)Z(rz). (4.2)

(G andZ are the ghost and gluon renormalization function, respectively.) For tiner Idiagram
the corresponding expression {ga%(r2),/a33(r2)/r? with a39(r?) being proportional to the
square of the three-gluon vertex aftl As the coupling constant derived from the 3-gluon vertex
has a smaller infrared fixed point [42] than the one derived from thetgglaon vertex the upper
diagram will be dominant. Witta9"(0) = 8.92/N, (seee.g. [43] or Sect. 2.3 of Ref. [44]) it

is evident that the kernel of the ghost-gluon Bethe-Salpeter equatiomyisstreng. As typical
strengths for critical coupling constants are of the order of onedgedref. [40]) one may even
speculate whether the kernel of this Bethe-Salpeter equation provigknes for a dynamical
breaking of BRST symmetry. A very welcome side effect would be the rel@dstone nature
of the bound state guaranteeing masslessness.

5. On the quark-gluon bound state equation

The scaling solution for the YM Green's functions leads to dynamical ceyraimetry break-
ing in the quark sector [15]. The quark propagator is then infrared fililie twelve possible Dirac
tensor structures of the quark-gluon vertex are then all infraredgiwné with an infrared exponent
—K —1/2. The same infrared divergence results for vanishing gluon momentuhthiarieads to
an 1/k* behaviour of the kernel in the four-quark functiskrheing the momentum exchange. This
is indicative of a linearly rising potential between static quarks, and thuk @eafinement. Fur-
thermore, the Slavnov-Taylor identities require that the ghost-ghosk-queark scattering kernel
is infrared trivial, see Sect. 3.9 in Ref. [15].

(AIETTTTTT “STrrPH
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Figure 4: Graphical representation of the quark-ghost Bethe-Saigefuation.

As in the ghost-gluon case one has two choices for the Dyson-Schwaggetion for the
quark-ghost scattering kernel according to which leg one puts theveaex. Choosing a ghost
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leg to place the bare vertex is the infrared consistent choice [11]. Usengaime truncation re-
guirements and the same derivation of the Bethe-Salpeter equation as ir¥fmiprsubsection
one arrives at the equation depicted in Fig. 4. This equation is in full agmeewith the infrared
analysis of the scaling solutione. it is a valid bound state equation, and in its kernel the infrared
exponenk cancels.

Furthermore, this kernel is well approximated a9 (k2)/a9-9'(k2) /k? wherea9"(k?) is
defined above and9-9'(k?) is proportional to the square of the quark-gluon vertex ZndAs
a9-9'(k?) 0 1/k? the above remarks of the super-criticality of the kernel equally apply.

6. Conclusions and outlook

In these notes we briefly reviewed the concept of BRST quartets, anginpbasized the
different roles of the perturbative and non-perturbative BRSTtgtsarWe have discussed a pos-
sibility how the non-perturbative BRST quartets generated by transgkrses and quarks can be
studied quantitatively.

To complete this project many open questions still needs to be answeretiaw'iae bound
states representing the respective 2nd daughters? Is BRST spardgrizoken? Are there as-
sociated Goldstone bosons or fermions? Can a solution of the homogesreioh®mogeneous
Bethe-Salpeter equation provide information on the positivity or positivity timiafor quarks?
And what is then the relation to quark confinement?
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