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1. Introduction

The vacuum of the quantized Yang—Mills gauge field theory contains masthiation about
its distinct features like confinement, chiral symmetry breaking, etc. In tmeilkdmian formula-
tion, this information is carried by the ground-state wavefunctional. In teahgauge, ind + 1)
dimensions, the problem looks very simple: One strives to solve the Schdidiquation

W dx{ -1 1R3(x)2 b Wo[A] = EoWolA 1.1
A WolA / {25Aﬁ)+ ()}o[] oWolA| (1.1)
with an additional constraint that physical states are invariant undeitésiimal local gauge trans-
formations (Gaul3’ law):

(5a°a +g£ab°Ak) 5 VA =0 (1.2)

Subtleties of this problem were outlined more than 30 years ago by one dk@g (1]. It
was argued that at large distance scales one expects the wavefunitiasaume the so called
dimensional-reduction form

Werf A }Nexp[ H/ddX Ri(x )F.?(X)]a (1.3)

i.e. a vacuum with color-magnetic fields fluctuating independently in eaclespecpoint. In such
a case the computation of a spacelike loogdn+ 1) dimensions reduces to the calculation of a
Wilson loop in Yang—Mills theory ird Euclidean dimensions. If the property existed for Yang—
Mills theories(3+ 1) and(2+ 1) dimensions, then these would be confining, since the theory in 2
euclidean dimensions exhibits the area lattowever, the dimensional-reduction form cannot be
the whole story, it does not provide correct short-distance structubhe dheory.

As a step forward, Greensifg [2] proposed a systematic strong-coeplramsion of the Yang—
Mills vacuum wavefunctional in the form:

WolU] = 4 exp(RU)), (1.4)

where the functioR in the exponential is an expansion in terms of closed loops — products of link
variabledJ along closed contours on the lattice:

R[U] =

) &0+« s+ o0

+ larger contours.
(1.5)
It was later shown by Guo, Chen and [ [3] that for smoothly varyingggsfields the first terms
of the expansion are expressed through the color magnetic field str&igth= F2(x), and the
covariant laplacian in the adjoint representatiéif,= % - %, whereZ[A] denotes the covariant
derivative in the adjoint representation:

RU] O —; (akoTr [B?] — a3k, Tr [B(—2%)B] +...), (1.6)

LIn the rest of this paper, we will discuss exclusively the cas@ef1) dimensions.
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where
Ko=12Co+2(C1+Co+C3), Kz=1c1  with co=0(B?), c,cnc=0(BY. (1.7)

With only a few exceptions (see references(in [4]), there was not muck done in this
area after the initial efforts. However, recently interest in the problethefrang—Mills vacuum
wavefunctional has been revived and various plausible propogals€owacuum states have been
advanced. We will present tests of two of them which differ by their motivaliot share some
common features. More results and other proposals will be coveredhelse#].

2. Two proposals

With a grain of imagination one can assume that an expansion of the fojrmgigh) result
from a vacuum wavefunctional

WolAl=A exp[—; / dPxaRy B(x) K[~ 72 Bb(y)} 2.1)

with a kernel depending on the gauge couplingnd the adjoint covariant laplacian. That kernel
cannot be arbitrary — one should be able to reproduce the QED vacauaiumctional [for SU(2)
in (24 1)-dimensional spacetime] fgr— 0, which is known to be[]5]:

Wo[A] O exp{—; / d2xd?y [0 x AX)] ( \/_1TZ> 0% A(y)]}. 2.2)
Xy

The kernel has thus to satisfy the condition:

Ve

The above condition is, by construction, satisfied by the approximate raa@vefunctional
proposed recently by the present authffs [6]:

; ab 2 5ab
gl}anoKXy[—Q | = < >Xy. (2.3)

ab
WeolAl=4 exp [% / d?xd?y B3(x) (\/(_@2 i E mz> Bb(y)] . (2.4)
Xy

Hereq denotes the lowest eigenvalue(ef2?), andmis a constant (mass) parameter proportional
to g> ~ 1/B. ltis similar to a proposal by Samugl [7]; the difference lies in the subtracid\
which is crucial, sincé—2?2) has a positive-definite spectrum and we have hints that its lowest
eigenvalue diverges in the continuum limit.

The supporting evidence for this proposal comes from four souficég:[

1. The proposed form is a good approximation to the true vacuum forgstields constant in
space and varying only in time.

2. If we divide the magnetic field strengB{x) into “fast” and “slow” components, the part
of the vacuum wavefunctional that depend<Bap,, takes on the dimensional-reduction form. The
fundamental string tension is then easily computed as

or = 3md’/16. (2.5)
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3. If one takes the masa in the wavefunctional as a free variational parameter and computes
(approximately) the expectation value of the Yang—Mills hamiltonian, one firmtsatimhon-zero
(finite) value ofmis energetically preferred.

4. Results for the mass gap, and the Coulomb-gauge ghost propaghtbealor-Coulomb
potential computed frorfPgo[A] are in good agreement with those derived from standard Monte
Carlo simulations (see below).

Despite this evidence, our proposal represents only an educatex] queivated by the form
of the QED vacuum state, dimensional reduction, and gauge invariance.

A more sophisticated approach has been followe@in 1) dimensions by Karabali, Nair and
collaborators|[[9]. In the temporal gaugk(= 0) they combine the remaining two components of
the gauge potential into complex fields:

=1(A1+iA),  A=Ll(A-iAy), (2.6)
and then introduce new variables, a matrix-valued fiéld SL(N, %), which is related t\, A via
A=—(@MMT  A=M"aMmh), 2.7)

wherez = x; — ix2 andz = X3 + ix, are the usual holomorphic variables in the complex plane.
Under a gauge transformatid®, M transforms covariantlyyl — QM, and can be used to
define gauge-invariant field variables:

H=M™,  P~Tr(T3aH)H™Y), (2.8)

through which one can express the hamiltonian, inner products of phgttes, and the vacuum
wavefunctional.

Karabali et al. argue that the part bilinear in field variakli&swhen expressed in usual vari-
ables, has the form:

ab
LIJKKN [A] ~exp [_%/dZXdzy Ba(x) <\/ﬁ+ m) Bb(y)] ) (29)
Xy

which, however, is not gauge-invariant. One can imagine that higlderderms inJ? might
convert the ordinary laplacian in Eq. (2.9) into the covariant laplaciadirgao:

ab
Wikn'[Al ~ exp [—%/dzxdzy B¥(x) (\/ﬁﬁ- m> Xbe(y)] : (2.10)
This form is still hardly sustainable, because of the divergence of thesiogigenvaludg of the
adjoint covariant laplacian (discussed above).

Instead of the form{(2.10) we will subject to lattice tests a “KKN-inspired"tybrid” wave-
functional which has[(2.9) and (2]10) as starting point and agrees with theabelian gauge
configurations, but in which, similarly to the GO proposal, the covariant ¢équta —22) is re-
placed by the subtracted ofie 22 — Ao):

ab
whybnd[AwVexp[% / dzxdzyB‘"*(x)( T /\10)+ mzm) Bb<y>]. (2.12)
Xy
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3. Testsof the proposals

Our aim is to test how good/bad is the approximation of the true Yang—Mills vacuave-
functional by the proposed approximate forms, Eq] (2.4) ind](2.113cA@ve this goal, we take a
set of operator§Q[A]} that depend on gauge fieldsand compute (and compare) their expectation
values:

. <LngueyQ[A] |WEue) = ( Q[A] )mc in Monte Carlo latticesi.e. an ensemble of two-dimensional
slices of configurations generated by MC simulations of the three-dimeh&onkdean SU(2)
lattice gauge theory with standard Wilson action at a coupfigggfrom each configuration, only
one (random) slice at fixed euclidean time is taken;

° <WO]Q[A] |Wo) = ( Q[A] )recursionin “recursion” lattices, i.e. an ensemble of independent two-
dimensional lattice configurations generated with the probability distributiomdiyea proposed
vacuum wavefunctional, with parametamsandg2 fixed to some reasonable values, to be able to
compare to the MC ensemble.

Numerical simulation of |Wo|> The generation of recursion lattices whose probability distribu-
tion P[A] is given by the square of a wavefunctional of the type] (2.1) is basedeofoliowing
idea [6]: Define a probability distribution for gauge fieldswith the kernelK controlled by an
independent “background” configuratiéh

PIAK[A]] = A exp [— / d?xd?y B (x; A)KSP[A]B"(y; A)} : (3.1)

where the field strengtB is computed fron, and bothA andA’ are fixed to an appropriate gauge.
If the variance of the kernd{[A] in the probability distributiorP[A] is small after the choice of
gauge, then one can write down a chain of approximate relations:

PIA = Z[AK[A]] = Z[A; (K)] = & {A;/dA’ W[A;K[A’]]P[A’]] ~ /dA’ DA K[A]PIA].
(3.2)
The probability distributiorP[A] can then obtained by solvinp (B.2) iteratively:

PUIA = Z|AK[0)], ..., PKDA= / dA 2[AK[APWIA]. (3.3)

Practical implementation of the recursion procedure consists of the follosténs: Choose
A; = 0 (axial gauge) ané, # 0, then

(i) given A, setA, = Ay,

(i) Z[A;K[A]] is gaussian iiB, diagonalizeK[A'] and generate a neB+ield stochastically,

(i) from B calculateA; in axial gauge and compute everything of interest,

(iv) go back to step (i), repeat as many times as necessatry.

The procedure converges rapidly, one ne€@%0) cycles above, and the assumption about a
small variance oK among configurations is supported a posteriori by the absence of lacteafl
tions of the spectrum df evaluated on individual recursion lattices.
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Choice of vacuum wavefunctional parametersmand g Our next task is to select appropriate
values for parameters (or B = 4/g?) andm of recursion lattices to be able to compare to MC
lattices with Wilson-action coupline. In our earlier studieq][§] 8] witigo we chose3 = f3e,
and fixedm using Eq. [2]5) by the measured value of the fundamental string tensiortt{ge la
units): m(Be, L) = 4Be0t(Be, L) /3.

Another possibility is to use for fixing andm some information about the true Yang—Mills
vacuum wavefunctional g8z for a set of simple gauge-field configurations. The square of the
vacuum wavefunctional for some trial configurations (hon-abeliastemn fields, abelian or non-
abelian plane waves) can be computed numerically in simulations of the threpsitma Yang—
Mills theory. Take a set of time-independent configuratigns= {UU)(x),j = 1,...,M}. The
method (proposed long agp J10] and described in more detafl in [4]) iscbas the following
identity:

WU )2 = ;/[DU]a(uo) Na[ux0o-uieles (3.4)

In practice, one measures the probability in a modified lattice Monte Carlo simuldtienlinks

att = 0 are constrained to belong to a configuration from theZgetin a MC update all links,
except those with= 0, are updated by the usual heat bath method. Onhth@slice, one of thé/
configurations from the s&¥ is selected at random, and then accepted/rejected by the Metropolis
algorithm. LenN; denote the total number of times that ti¢h configuration from the set is
accepted, anbl the total number of updates of the- O plane. Then:

. N;
wuizo lim L. 3.5
WU N N (3.5)

For determining vacuum wavefunctional parameters we measured pitidmlof abelian
plane waves with fixed (maximal) wavelength= L and varying amplitudes:

Ul(j)(nl, np) =4/1—aj(np)?L +iaj(nz)os, Uz(j)(nl, n) = 1y, (3.6)
with  aj(ny) = a JLFZVJ cos@, p?=2 (1— cosan> : (3.7)

The probabilities measured in the Monte Carlo simulation described above gardmetrized by
WU 2 = exp(—RuclUD] = Ro),  Ruc[UD] =2(a +yj) amc(p) + const  (3.8)
Similarly, for a theoretical Ansatz of vacuum wavefunctional:
RansaidU"V] = 2(a +yj) wansad ) + const. (3.9)
For the proposals discussed in Secfiph 2:
2 2
(A)Go(p)zglz\/pfw, akKN(p):glzpzfmz—Hn'

Fig. i shows results fomuc vs. p? in physical units for a number g8 values and lattice
sizesL. The scale was set by the conventional valuéod4 GeV)? for the physical string tension,

(3.10)

2For abelian configurations, the KKIfI (2.9) and hybfid (2.11) wavefionals coincide.
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Figure 1. Cumulative data fotayc vs. p? in physical units, on lattices of extensiohs= 16,24, 32,40,48,
and euclidean lattice couplin@ls = 6,9,12. The curves (hardly distinguishable from one anothgmasent
weo(p) andaxkn (p) for fitted parameterapnys andgghysgiven in Tableﬂl.

i.e. the lattice spacing ia(Bg,L) = v/ 0t(Be,L)/(0.44 GeV). The data were fitted by functional
forms in Eq. [3.10), the resulting parameters are summarized in ffable 1.

} dPar.am.eters of the proposed wavefunctionals in lattice units w, (Ruriant Monys gghys
IXed using: GO | 0.771 1.465
QZ(BE, L) — Q;Z)hys a(BB L)’ m(ﬁE, L) = mphysa(BEa L) (3.11) KKN 0.420 1.237

We will present below results f@: = 9, the actual parameter valuegable 1: Vacuum wavefunc-
used at this coupling are listed in Taf]é 2. tional parameters (phys. units).

Results We focus on two important quantities defined in Coulomb gauge, the Couloogega

ghost propagator:
< ( ; ) aa>

- 1 - 5 1 aa
x-yl=R <<D'@[A]( D)D'@[A]>Xy>‘|xyR.

(3.12)

and the color-Coulomb potential:

R0 ()

(3.13)
It was argued by Gribo[[13] and Zwanziggr]14], that the low-lyingatpum of the Faddeev—
Popov operator,Z[A] = —- Z[A], in Coulomb gauge probes properties of nonabelian gauge
GO hybrid
Be L oi(Be,L) a(Be,l)| B m | B m
9 32 0.162 0.367 | 7.43 0.283| 8.80 0.154

Table 2: Values off3 andmfor the GO and hybrid wavefunctionals @t = 9, derived from the parameters
in Tableﬂ. (The value of/ o0 (Be, L) comes from Monte Carlo simulations of the standard Wilsdioadn
three Euclidean dimensionfs J12].)

3The results obtained for the GO vacuum wavefunctional with two variarftsiog its parameters, described in the
text, almost do not diffef[}1].
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Figure 2: The Coulomb-gauge ghost propagator. Figure 3: |V (0)| in the individual configurations.

fields that are crucial for the confinement mechanism. The ghost patgpag Coulomb gauge and
the color-Coulomb potential are directly related to the inverse of the FadBepov operator, and
play a role in various confinement scenarios. In particular, the colaie@wb potential represents
an upper bound on the physical potential between a static quark andaakitfi].

An important point to mention is the equality of the vacuum wavefunctionals in teahpo
and Coulomb gauge (see e.g.][16]), when evaluated on gauge fieldgisgtise Coulomb gauge
conditiond- A= 0, and which lie in the first Gribov region. Our numerical method describedea
generates configurations in the temporal gauge, these are then tnaedfor Coulomb gauge, and
Coulomb-gauge observables are evaluated in the transformed cotifigara

Figure[2 displays the equal-time ghost propagator in Coulomb gauge conipuatetandard
Monte Carlo simulation on a 32attice atBg = 9, together with results obtained from recursion
lattices with probability distributions given By2, and ‘Pﬁybriw generated usiny andm values
listed in TablgR. The agreement is quite perfect, for all three ensembles.

Figure[B is crucial for understanding results for the color-Coulomb pielewhich are shown
in Fig. 4. One can evaluate the potential in each individual lattice configuraffagure[B dis-
plays values ofV (0)| in MC lattices, GO and hybrid recursion lattices. It is clearly seen that most
configurations havév(0)| in the range between about 2 and 10 (about 80%), but there are rare
instances of configurations with much higher values. These “exceptitatifes possess a still
positive, but very small value of the lowest eigenvalue of the Faddepewoperator, and are
therefore rather difficult do gauge-fix to Coulomb gauge. If we diséameh our ensembles con-
figurations with|V (0)| greater than some cut, we obtain results illustrated in Fifj. 4. Fer=5
or even 10 the agreement of potentials for MC, GO, and hybrid lattices semable. However,
as the cut is increased, the agreement deteriorates. The GO and hytleritigls are still roughly
linear (and hardly distinguishable from each other), but deviate quaveiiafrom the MC result.
This indicates a discrepancy in the tails of the probability distributions. Whilettbstgropagator
(B-12), containing only a single factor of the inverse Faddeev—Popenatip, is rather insensitive
to the tails and its values are mainly determined by the bulk of configurations, lttreGaulomb
potential [3.I3) involves two factors and is more sensitive to the tails.

But what makes the probability distributions correspondinfg, and¥y, ;. so close? We
believe that the reason is that both wavefunctionals have — for optimaleshoi¢heir parameters
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Figure 4: The color-Coulomb potential for illustrative values of the k.

— about the same dimensional-reduction limit, and the results are mainly sensttiat limit, not
to the detailed functional form of the kerri€lthat enters the wavefunctional.

4. Summary

1. We described a recursion procedure that allows to generate lattifigurations with prob-
ability distributions given by approximate Yang—Mills vacuum wavefunctioofisertain simple
forms like (2.4) and[(2.11).

2. Relative magnitudes of the true vacuum wavefunctional on particuogeonfigurations
(abelian plane waves, non-abelian constant configurations) camiyguted numerically.

3. Parameters of approximate vacuum wavefunctionals can be fixedyditiiny the results
for long-wavelength abelian plane waves.

4. The two tested proposals (GO, KKN-inspired hybrid) provide Coulgabge quantities
almost indistinguishable, and in reasonable agreement with lattice Monte €sultsr(with some
discrepancy in color-Coulomb potentials).

5. GO and hybrid vacuum wavefunctionals seem to agree with the true-Milhg vacuum
wavefunctional for the bulk of the probability distribution.

6. The important common property of both tested approximate vacuum wetiefoals ap-
pears to be their almost identical dimensional-reduction form.

Only a subset of our recent results was covered in the present egitnb The interested
reader should consult Ref§] [4,[6[8] 11] for additional details ane: miata.
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