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Spectral Kurtosis (SK) is a statistical approach for detecting and removing radio frequency inter-
ference (RFI) in radio astronomy data. In this study, the statistical properties of the SK estimator
are investigated and all moments of its probability density function are analytically determined.
These moments provide a means to determine the tail probabilities of the estimator that are es-
sential to defining the thresholds for RFI discrimination. It is shown that, for a number of ac-
cumulated spectra M ≥ 24, the first SK standard moments satisfy the conditions required by a
Pearson Type IV probability density function (PDF), which is shown to accurately reproduce the
observed distributions. The cumulative function (CF) of the Pearson Type IV is then found, in
both analytical and numerical forms, suitable for accurate estimation of the tail probabilities of
the SK estimator. This same framework is also shown to be applicable to the related Time Do-
main Kurtosis (TDK) estimator, whose PDF corresponds to Pearson Type IV when the number of
time-domain samples is M ≥ 46. The PDF and CF are determined for this case also.
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1. Introduction

The Spectral Kurtosis estimator (ŜK) was originally proposed by Nita et al. [7] as a statistical
tool for real-time radio frequency interference (RFI) detection and excision in a Fast Fourier Trans-
form (FFT) radio spectrograph. The first spectrograph designed for ŜK, the Korean Solar Radio
Burst Locator [KSRBL; 1], demonstrated the effectiveness of the SK algorithm, but also revealed
the need for a more accurate calculation of the theoretical RFI detection thresholds than initially
proposed. Consequently, Nita & Gary [8] derived the exact analytical expressions for the statisti-
cal moments of ŜK and, based on its first four standard moments, assigned to it a Pearson Type
IV probability curve [9], which was shown to be in very good agreement with the Monte Carlo
simulated ŜK probability distribution function (PDF), as well as with the distribution derived from
direct experimental observations made with the KSRBL instrument [2].

As extensively described in the previous papers, what makes an SK spectrograph with N spec-
tral channels distinct from a traditional one is the fact that it accumulates not only a set of M
instantaneous power spectral density (PSD) estimates, denoted S1, but also the squared spectral
power denoted S2. These sums, which have an implicit dependence on frequency channel fk, are
used to compute the averaged power spectrum ⟨P⟩= S1/M, as well as the quantity

ŜK =
M+1
M−1

(MS2

S2
1

−1
)
, (1.1)

which is a cumulant-based estimator of the spectral variability corresponding to the signal parent
population,

V 2
k =

σ2
k

µ2
k
, (1.2)

where µk and σ2
k are the frequency-dependent PSD population means and variances, respectively.

For a normally distributed time domain signal, i.e. an RFI-free signal, Nita & Gary [8] showed that
the estimator given by equation (1.1) is unbiased, i.e. E(ŜK) =V 2

k = 1.
This presentation compiles the main results of Nita & Gary [8] leading to the definition of ŜK

given by equation (1.1), and provides a practical guide for computing the RFI thresholds with a
predefined false alarm probability (PFA) level.

2. The Unbiased Spectral Kurtosis and Time Domain Kurtosis Estimators

The unbiased estimator ŜK may be derived based on the properties of the generalized gamma
distribution [GGD, 10] defined as

f (x,a,d, p) =
pxd−1e−( x

a )
p

adΓ(d/p)
, (2.1)

where Γ(z) =
∫ ∞

0 tz−1e−tdt is the well known Euler’s Gamma function. The expected sample mo-
ments about origin corresponding to a GGD function are given by

E(xn) =
Γ(d+n

p )

Γ(d/p)
an, (2.2)
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which reduces to the known result E(xn)= n!µn in the particular case of an exponential distribution,
f (x,µ,1,1).

As shown by Nita & Gary [8], if one considers a set of M independent random variables that are
are individually distributed according with a p = 1 GGD function, f (x,a,d,1), (which is nothing
else than a standard gamma distribution), the probability distribution of the mean ⟨x⟩ = ΣM

i=1xi is
the GGD function

f (⟨x⟩,a/M,Md,1), (2.3)

and the probability distribution of the squared mean is the GGD function

p(⟨x⟩2) = f
[
⟨x⟩2,

( a
M

)2
,
Md
2

,
1
2

]
, (2.4)

which, making use of equation (2.2), provides the expectations of an arbitrary power of the squared
mean,

E(⟨x⟩2n) =
Γ(Md +2n)

Γ(Md)

( a
M

)2n
. (2.5)

Although a closed form for the PDF of the mean of squares ⟨x2⟩= ΣM
i=1x2

i has not been found,
Nita & Gary [8] proved that the statistical moments of the mean of squares can be exactly computed
according with the formula

E(⟨x2⟩n) =
(a/

√
M)2n

[Γ(d)]M
∂ n

∂ tn

[ n

∑
r=0

1
r!

Γ(2r+d)tr
]M∣∣∣

t=0
. (2.6)

For the particular cases of the exponential and χ2 distributions, f (x,µ,1,1) and f (x,µ,1/2,1)
respectively, Nita & Gary [8] proved that ⟨x⟩2/⟨x2⟩ and ⟨x2⟩ are uncorrelated random variables, i.e.
that they have null covariance, which immediately led to the exact moments of the ratio between
the mean of squares and square of mean, which can be expressed as

E
[(⟨x2⟩

⟨x⟩2

)n]
=

E(⟨x2⟩n)

E(⟨x⟩2n)
. (2.7)

However, as we will show here, the null covariance of ⟨x⟩2/⟨x2⟩ and ⟨x2⟩ is an intrinsic prop-
erty of any p = 1 GGD function f (x,a,d,1), which makes equation (2.7) hold for any value of d.
To prove this key property, we make use of the expression

cov
(⟨x⟩2

⟨x2⟩
,⟨x2⟩

)
=

2
M

[E(x3)

E(x)
−2

E(x2)2

E(x)2 +E(x2)
]

(2.8)

that is valid for any particular PDF [Eq.19, 8], in which we enter the explicit moments provided by
equation (2.2) to obtain

cov
(⟨x⟩2

⟨x2⟩
,⟨x2⟩

)
= 0. (2.9)

Therefore, provided that the observable x is distributed according to a GGD function f (x,a,d,1),
and taking in consideration equations (2.5) and (2.6), the statistical moments of the ratio between
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the mean of squares and square of mean given by equation (2.7) may be written in the compact
form

E
[(⟨x2⟩

⟨x⟩2

)n]
=

MnΓ(Md)
Γ(d)MΓ(Md +2n)

∂ n

∂ tn

[ n

∑
r=0

1
r!

Γ(2r+d)tr
]M∣∣∣

t=0
, (2.10)

which is independent of the scaling parameter a. Nita & Gary [8] used the particular form of
equation (2.10) corresponding to d = 1 to derive the SK estimator given by equation (1.1), and the
particular form corresponding to d = 1/2 to derive a time domain kurtosis (TDK) estimator

T̂ DK =
M+2
M−1

(MS2

S2
1

−1
)
, (2.11)

both of them being unbiased estimators of the spectral variability corresponding to the underlying
probability distribution f (x,a,d,1), which according to equation (1.2) is

V 2 =
E(x2)−E(x)2

E(x)2 =
1
d
, (2.12)

an expression that is 1 for the d = 1 (SK) case, and 2 for the d = 1/2 (TDK) case.

3. The Pearson Type IV Approximation of the Spectral and Time Domain Kurtosis
Estimators

Using equation (2.10), the first standard moments of the ŜK estimator given by equation (1.1)
may be written as

µ ′
1 = 1; µ2 =

4M2

(M−1)(M+2)(M+3)
(3.1)

β1 =
4(M+2)(M+3)(5M−7)2

(M−1)(M+4)2(M+5)2 ; β2 =
3(M+2)(M+3)(M3 +98M2 −185M+78)
(M−1)(M+4)(M+5)(M+6)(M+7)

,

where β1 = µ2
3/µ3

2 and β2 = µ4/µ2
2 are directly related to the more commonly used skewness,

γ1 =
√

β1 and kurtosis excess, γ2 = β2 − 3. Similarly, the first standard moments of the T̂ DK
estimator are

µ ′
1 = 2; µ2 =

24M2

(M−1)(M+4)(M+6)
(3.2)

β1 =
216(M−2)2(M+4)(M+6)
(M−1)(M+8)2(M+10)2 ; β2 =

3(M+4)(M+6)(M3 +213M2 −474M+368)
(M−1)(M+8)(M+10)(M+12)(M+14))

.

The appropriate PDF approximation for the ŜK and T̂ DK estimators may be found by investi-
gating the Pearson’s criterion defined as [5, p. 151]:

κ =
β1(β2 +3)2

4(4β2 −3β1)(2β2 −3β1 −6)
, (3.3)

where the exact values of the parameters β1 and β2 are provided by equations (3.1) and (3.2),
respectively. Pearson’s criterion indicates that for M ≥ 24 the ŜK estimator may be approximated
by a Pearson Type IV probability curve. The same PDF approximation may be used for the T̂ DK
estimator for M ≥ 46.
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Figure 1: Comparison between
the SK distributions (black
lines) obtained by numerical
simulation for different accu-
mulation lengths M and their
corresponding Pearson Type
IV approximations (red lines).
The four Pearson Type IV
parameters m, ν , λ , and a are
displayed on each plot.

3.1 Pearson Type IV Probability Distribution Function

The most general analytical form of the Pearson Type IV PDF originally introduced by Pearson
[9], including its non-trivial normalization factor, was given by Nagahara [6] as

p(x) =
1

a
√

π
Γ(m+ i ν

2 )Γ(m− i ν
2 )

Γ(m− 1
2)Γ(m)

[
1+

(x−λ
a

)2]−m
Exp

[
−νArcTan(

x−λ
a

)
]
, (3.4)

where the four parameters m, µ , a, and λ may be expressed in terms of the central moments of the
distribution as [4]:

r =
6(β2 −β1 −1)
2β2 −3β1 −6

; m =
r+2

2
; ν =−

r(r−2)
√

β1√
16(r−1)−β1(r−2)2

(3.5)

a =
1
4

√
µ2(6(r−1)−β1(r−2)2); λ = µ − 1

4
(r−2)

√
µ2β1.

Figure 1 compares the Pearson IV approximations of the ŜK PDF with the Monte Carlo sim-
ulated distributions for M = 32, 1024, 4096, and 8192. By visual inspection, we may conclude
that the Pearson IV approximations accurately reproduce the shapes of the numerically simulated
histograms for different orders of magnitude of the accumulation length.

To compute the tail probabilities of the Pearson Type IV PDF, one has to compute the cumu-
lative function P(x), (CF), and the complementary cumulative function, 1−P(x), (CCF),

P(x) =
∫ x

−∞
p(x)dx; 1−P(x) =

∫ ∞

x
p(x)dx, (3.6)

for which Heinrich [4] provided the following closed form:

P(x) =


1+P1(m,ν ,a,λ ,x), x < λ −a

√
3

P2(m,ν ,a,λ ,x) |x−λ |< a
√

3
1−P1(m,−ν ,a,−λ ,−x), x > λ +a

√
3,

(3.7)

where

P1(m,ν ,a,λ ,x) =
a

2m−1

(
i− x−λ

a

)
F
(

1,m+ i
ν
2
,2m,

2
1− i x−λ

a

)
p(x)
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Figure 2: ŜK threshold computation for M =

6104. The lower and upper thresholds displayed
by the two vertical lines have been estimated as
the intersection points of the horizontal and nu-
merical integration lines. Their values of 1 −
0.073 = 1− 5.6799/

√
6104 and 1+ 0.081 = 1+

6.3596/
√

6104, respectively, have to be compared
with the symmetric thresholds of 1 ± 6/

√
6104

(vertical dotted lines).

Figure 3: T̂ DK threshold computation for M =

12208. The two solid vertical lines, having the
ordinates 2 − 0.125 and 2 + 0.143, represent the
RFI detection thresholds corresponding to a sym-
metric standard false alarm probability level of
0.13499%. These thresholds have to be compared
with with the less accurate symmetric thresholds
of 2± 3

√
24/12208 = 2± 0.133 (vertical dotted

lines).

P2(m,ν ,a,λ ,x) =
1

1− e−(ν+i2m)π − ia
iν −2m+2

[
1+

(x−λ
a

)2]
×F

(
1,2−2m,2−m+ i

ν
2
,
1+ i x−λ

a
2

)
p(x),

and

F(α,β ,δ ,z) = 1+
αβ
1!δ

z+
α(α +1)β (β +1)

2!δ (δ +1)
z2 + ...=

∞

∑
k=0

α(k)β(k)

k!δ(k)
zk (3.8)

is the Gauss hypergeometric series.
Alternatively, instead of equation (3.7), one may use the formula provided by Willink [11]

P(m,ν ,a,λ ,x) =
e−[λ−i(2−2m)]ΦR−1
e−[λ−i(2−2m)]π −1

, (3.9)

where

Φ =
π
2
+ arctan

(x−λ
a

)
; u = −m− i

2 ν ; R = F(2−2m,u,u+1,eiΦ)
F(2−2m,u,u+1,1) .

However, if one wants to avoid the numerical difficulties related to the evaluation of the hy-
pergeometric series, one may choose to perform a direct numerical integration (equation [3.6]) of
equation (3.4), which may achieve reasonable accuracy with far less computational effort, espe-
cially if tailored integration methods, [e.g. 6], are employed.

Figure 2 displays the numerical results for M = 6104, computed according to equation (3.7),
(triangular symbols), equation (3.9), (square symbols), and by direct integration of equations (3.6),

6
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(solid line). The hypergeometric series where computed using the hypergeom function in Maple
11 (MapleSoft), and the numerical integration was performed using the int_tabulated function in
IDL 6.4 (ITT). The plots display both CF (rising) and CCF (descending) needed to evaluate the
RFI thresholds equivalent to normal distribution’s ±3σ level (probability 0.13499%, horizontal
solid line). It may be concluded that, in the region of interest, all three methods provide similar
numerical results. However, it was found that, for SK values well before the distribution peak, the
numerical accuracy of equation (3.9) is better than that of equation (3.7), while the direct numeri-
cal integration of CF gives similar results as equation (3.9). After the peak of the ŜK distribution,
the numerical accuracy of equation (3.7) is better than that of equation (3.9), while the numerical
integration of CCF gives similar results as equation (3.7). Therefore we conclude that the numer-
ical evaluation of equation (3.9) gives a more accurate estimation of the CF and the numerical
evaluation of equation (3.7) gives a more accurate estimation of the CCF, while the direct numer-
ical integration of equations (3.6) gives results of comparable accuracy at both sides of the ŜK
distribution. The lower and higher thresholds displayed by the two vertical lines have been esti-
mated as the intersection points of the horizontal and numerical integration lines. Their values of
1− 0.073 = 1− 5.6799/

√
6104 and 1+ 0.081 = 1+ 6.3596/

√
6104, respectively, are compared

with the symmetric thresholds of 1±6/
√

6104 (vertical dotted lines) originally proposed by Nita
& Gary [8]. Although this correction seems small in absolute value for the large-M case, e.g.
M = 6104 illustrated in Figure 2, we calculate that, compared with the symmetric thresholds, the
new thresholds account for 67% less rejection of valid data as false RFI occurrences at the upper
bound of the distribution, and provide better rejection of true RFI signals of low signal to noise ra-
tio at the lower bound. In combination, the result is an overall better performance of the ŜK–based
RFI rejection algorithm. The correction becomes more important for lower M. Figure 3 displays
the PDF of the T̂ DK estimator corresponding to an accumulation length of M = 12208, chosen to
match the same frequency and time resolution of a DFT-based spectrograph with M = 6104 (the
example used in Fig. 2; see Nita et al. [7] for a more detailed motivation of this choice). Despite
its large accumulation length, the estimator K̂ still has a noticeable skewness, which needs to be
properly considered in order to obtain the false alarm probability levels equivalent to ±3σ for a
normal distribution. Compared with the symmetric thresholds of 2±3

√
24/12208, the new thresh-

olds would reject 71% less valid data at the higher end of the distribution, while the shifted lower
threshold would improve the sensitivity of RFI detection at the lower end of the distribution.

4. Conclusion

We have investigated the statistical properties of the SK estimator and determined analytical
expressions for its PDF and CF with the goal of improving the selection of thresholds for RFI dis-
crimination. We also improved the definition of ŜK (equation [1.1]) relative to its original definition
[7] to form an unbiased estimator, and introduced a TDK unbiased estimator (equation [2.11]) to
be used for RFI detection at the DC and Nyquist frequency bins of a DFT-based spectrograph,
or at any frequency bin of a FIR–based spectrograph. We have derived closed form analytical
expressions for the complete set of the central moments of the SK and TDK estimators, and estab-
lished a common framework that allows accurate estimation of the RFI thresholds based on the first
four standard moments of their probability distributions (equations [3.1] and [3.2]), which, for any
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accumulation length M ≥ 24 and M ≥ 46, respectively, are used to compute the four parameters
(equation [3.5]) that completely determine the Pearson IV approximations (equation [3.4]) of their
true PDFs. Based on these four parameters, which depend only on the accumulation length M, the
CF and CCF of the SK or TDK estimators may be computed by using either the closed forms ex-
pressions provided by equations (3.9) and (3.7), respectively, or by direct numerical estimation of
the integrals given by equation (3.6). Compared to the symmetrical thresholds originally suggested
in Paper I, the procedure described in this study properly takes into account the intrinsic skewness
of the probability density functions of the SK and TDK estimators, which provides better overall
RFI detection performance for either small or large accumulation lengths. These theoretically es-
tablished results are shown in Gary, Liu & Nita [2, 3] to be exactly obeyed by data taken in the
KSRBL spectrometer hardware implementation of the algorithm, where the improvement in RFI
excision by use of these modified thresholds is confirmed. The modified thresholds become ever
more important when a smaller number M of accumulations is used. A simple procedure has been
written in IDL (Interactive Data Language) for numerical calculation of the thresholds for any M,
and is available upon request from the authors.
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