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We consider deeply virtual Compton scattering and deep inelastic scattering in presence of Regge
exchanges. Recently, we have proposed a model in which the diffractive phenomena that are ex-
pected to govern the low-xB DIS are incorporated at the parton nucleon level [1, 2]. Such effective
parton-nucleon amplitude gives the correct description of low-x structure functions. Surprisingly,
however, we have found that in the case of DVCS it breaks collinear factorization, i.e. Bjorken
scaling, while it naturally leads to the Regge-type scaling, as it was in fact predicted by Bjorken
and Kogut in [3]. In particular, we discuss the contribution of the Pomeron exchange to DVCS in
HERA kinematics. A new fit of the DVCS total cross section data from H1 and ZEUS is proposed.
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Quark-nucleon dynamics and DVCS Mikhail Gorchtein

Figure 1: Handbag representation of the Compton amplitude.

In the past two decades, notable theoretical activity has been dedicated to the study of the gen-
eralized parton distributions (GPD’s) [4]. GPD’s allow one to access the nucleon structure in a more
detailed manner than the parton distribution functions (PDF’s) studied within DIS paradigm, and
are a direct generalization of the latter. To access GPD’s, it was proposed to study hard exclusive
processes, i.e. deeply virtual Compton scattering, (DVCS) e + p→ e + p + γ at high virtuality Q2

of the photon originating from the scattered lepton, and low momentum transfer t between recoiled
and target nucleon. At present, DVCS has been studied experimentally at HERA [5, 6, 7, 8, 9] and
Jefferson Lab [10, 11]. For description of cross section data on DVCS at low-x, two competing
formalisms are used, Regge models [12], and the GPD-based models [13]. To be applied phe-
nomenologically, these latter would include models for Regge-like background. In general, Regge
background thus represents a systematic effect on the extraction of GPD’s. Moreover, if data allow
for interpretation without GPD’s, one may question the physical content of all GPD models. We
focus on applicability of the model [1, 2, 14] to DVCS in the HERA kinematics, Q2/W 2 << 1.

1. Compton amplitude, handbag and quark-nucleon amplitudes

The hadronic Compton tensor is given by the matrix element of the time-ordered product

of two electromagnetic currents, T µν = i
∫

d4zei q+q′
2 z〈N|T [Jν(z/2)Jµ(−z/2)]|N〉 where q(q′) is

the four momentum of the incoming (outgoing) photon. We will consider both the DIS process
that corresponds to the forward virtual Compton scattering with both photons spacelike, q = q′,
q2 = q′2 ≡ −Q2 < 0, and DVCS with q2 < 0, q′2 = 0 and ∆ = q− q′ 6= 0. The currents are given
by Jµ(z) = ∑q eqJµ

q (z), Jµ
q (z) = ψ̄q(z)γµψq(z) with ψq the quark field operator and eq the quark

charge. Using the leading order operator product expansion we replace the product of the two cur-
rents by the product of two quark field operators and a free quark propagator between the photon
interaction points z/2 and −z/2, as in Fig. 1. In this (handbag) approximation the hadronic Comp-
ton amplitude is then given by a convolution T µν = i

∫
d4K tµν

αβ
(K,q,δ )Aαβ (K,∆, p,λ ,λ ′) of the

quark Compton tensor

tµν

αβ
(K,q,δ ) =−e2

q

γν(6K +
6q+ 6q′

2
)γµ(

K + q+q′
2

)2
+ iε

+
γµ(6K− 6q+ 6q′

2
)γν(

K− q+q′
2

)2
+ iε


αβ

, (1.1)

α,β being Dirac indices, and the untruncated, with respect to the parton legs, parton-nucleon
amplitude, Aαβ (K,∆, p,λ ,λ ′) =−i

∫
d4ze−iKz〈p′λ ′|T [ψ̄α(z/2)ψβ (−z/2)|pλ 〉. Following [15, 2],

we represent this amplitude as

Aαβ (K,∆, p,λ ,λ ′) =
∫

dµ
2
∑

i
In

[
(6k ′+ µ)Γq

i (6k + µ)
]

αβ

(k′2−µ2 + iε)(k2−µ2 + iε)
ū(p′)ΓN

i u(p) (1.2)
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Figure 2: Direct and crossed contributions to the quark−nucleon-scattering amplitude

where Γ
q,N
i, j are constructed from Dirac γ-matrices and the available four-vectors p,∆,k. A generic

operator In = (µ2)n
(
d/dµ2

)n is applied to reflect that the quarks are bound in the nucleon [15].
We proceed by considering the scattering process N(p) + q(−k)→ N(p′) + q(−k′) shown

in Fig.2. Six relevant Dirac-Lorentz structures that can appear in four fermion operators and
conserve P, CP and CPT , as well as the quark helicity, are listed in Ref. [14] . Here, we con-
centrate on the Pomeron at Q2/W 2 � 1 that corresponds to HERA kinematics. Pomeron con-
tributes to only one structure, APomeron

qN = a1 q̄γαqN̄γαN. The amplitude a1 is analytic function
of invariants ŝ = (p− k)2 = (P−K)2, û = (p′+ k′)2 = (P + K)2 and t = ∆2, has unitarity cuts
in ŝ and û and at fixed-t can be represented through a dispersion representation, a1(ŝ, û, t,µ2) =
(2π)4 ∫ ds

[
ρs

1(s,t,µ
2)

s−ŝ−iε + ρu
1 (s,t,µ2)
s−û−iε

]
with the spectral function ρ

s,u
1 being non-zero above some thresh-

old values s0(u0) in the respective channel. For fixed t and large ŝ, we assume the quark-nucleon
amplitudes to follow Regge asymptotics, and we find for the spectral functions ρ

s,u
1 ∼ ŝαP(t)−1,

αP(t) being the Pomeron trajectory. An additional constraint on the behavior of the spectral func-
tions comes from the Pomeranchuk theorem which implies that asymptotically s and u channel
amplitudes are related ρu

1 (s→ ∞) = −ρs
1(s→ ∞). We introduce the C-even and C-odd combi-

nations ρ
∓
1 ≡ (ρs

i ∓ ρu
i )/2, and notice that ρ

−
1 and ρ

+
1 correspond to singlet (valence + sea) and

non-singlet (valence) GPD’s, respectively. We observe that only singlet combination may grow
with s in the high energy regime, whereas the non-singlet ones necessarily vanish at high s.

2. Regge exchange contribution to DIS and DVCS

Next, we will evaluate the contribution to the hadronic Compton amplitude from quark-nucleon
amplitude a1. We choose the kinematics as pµ = (p+,0,0⊥) and qµ = (0,Q2/(2xB p+),Q⊥), with
the usual Bjorken variable xB = Q2/2pq, and obtain

T µν
a1

=−4igµν

⊥
Q2

xB

ū(p′)γ+u(p)
2P+

∫
dµ

2ds
∫

d4KIn
k2
⊥+ µ2

[(K +∆/2)2−µ2 + iε][(K−∆/2)2−µ2 + iε]

×ρ
−
1 (s)

[
1

s− (P−K)2 + iε
− 1

s− (P+K)2 + iε

][
1

(K + q+q′
2 )2 + iε

− 1

(K− q+q′
2 )2 + iε

]
. (2.1)

The fact that the above Compton amplitude depends on the singlet spectral function ρ
−
1 only, is in-

dependent of the collinear approximation: the positive C-parity of the Compton amplitude requires
the C-even singlet combination ρ

−
1 . On the contrary, the form factor, possessing the odd C-parity

only depends on the C-odd non-singlet combination ρ
+
1 .

2.1 DIS (γ∗p→ γ∗p)

We next evaluate the amplitude of Eq.(2.1) in the forward kinematics ∆ = 0, q2 = q′2 =−Q2.
We make the collinear approximation in the hard quark propagators, 1

(k+q)2+iε ≈
xB/Q2

k+/p+−xB+iε and

3
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1
(k−q)2+iε ≈

−xB/Q2

k+/p++xB−iε , and obtain the familiar result for DIS,

T µν(∆ = 0) = gµν

⊥
1

2p+ ū(p′)γ+u(p)
∫ 1

0
dx

2x
x2− x2

B + iε
[q(x)− q̄(−x)], (2.2)

We can identify the parton densities with integrals over the spectral function,

x[q(x)− q̄(−x)] =−8π
2
Γ(n)(x−1)n+1

∫
dµ

2dξ (µ
2)n

ρ
+
1 (

ξ

x
,0,µ

2)
ξ +(n+1− x)µ2

(ξ +(1− x)µ2)n+1 . (2.3)

Using high energy asymptotics ρ
+
1 (s)∼ sαP−1, with αP = 1+ ε the Pomeron trajectory, we obtain

the experimentally observed asymptotics F2(xB)∼ x1−αP
B ∼ x−ε

B .

2.2 DVCS (γ∗p→ γ p)

Next we evaluate Eq.(2.1) in the DVCS kinematics, pµ = (p+,0,0⊥), qµ = (0,Q2/(2xB p+),Q⊥),
∆µ = (−xB p+,0,0⊥). Using the collinear approximation for the hard quark propagator 1

(k+q)2+iε ≈
xB/Q2

k+/p+−xB+iε , and 1
(k−q′)2+iε ≈

xB/Q2

−k+/p++iε . The DVCS amplitude in the collinear approximation is

T µν
a1

= gµν

⊥
1

2P+ ū(p′)γ+u(p)
∫ 1

0
dx
[

1
x− xB + iε

+
1

x− iε

]
H+(x,xB), (2.4)

with the singlet GPD H+(x,xB) = (1−xB/2)
∫ 1

0 dy
∫ 1

0 dz[q(z)− q̄(−z)]δ (x− z−yxB(1− z)). How-
ever, in presence of Regge asymptotics [q(z)− q̄(−z)]∼ z−αP , the real part of the integral in Eq.(2.4)
is divergent. In the case of the DIS amplitude, this divergency is cancelled in the sum of the direct
and crossed handbag diagram. This does not happen in DVCS: one photon is now real, the cancel-
lation between the direct and crossed diagrams is not exact, and cannot compensate for the rise of
the GPD at low x. For the non-singlet GPD, the integral over x reduces to∼ dxx1−αP and is conver-
gent. Thus we conclude that the collinear approximation is only adequate for valence GPD’s, and
it is that part of the full DVCS amplitude that obeys Bjorken scaling.

In order to obtain a finite contribution of the singlet GPD to the DVCS amplitude, it is nec-
essary to abandon the collinear approximation in hard propagators [14]. This introduces a scale
µ2 associated with the parton-nculeon spectral function, which is absent in the scale-independent
collinear approximation. This scale dependence is of no surprise since Regge behavior does in-
troduce a scale. In the limit Q2/µ2 >> 1 it can be shown that the leading contribution of the
Pomeron to the DVCS amplitude has the form [14] TDVCS ∼ Q2αP−2/xαP

B ∼W 2αP/Q2. This result
was obtained in the limit Q2→∞. At finite Q2, we replace 1/Q2 by a ∼ 1/(1+Q2/Q2

0) with some
characteristic scale Q2

0 that we will determine from a fit. We fit the HERA data using the following
parametrization for the cross section

σγ∗p→γ p = σ0

[(
W
W0

)α−1( 1
1+Q2/Q2

0

)]2

(2.5)

with W0 = 20 GeV. We perform a combined fit to both H1 [5, 6] and ZEUS [7] data. It gives
σ0 = 28± 4 nb, Q0 = 1.51± 0.05GeV and α − 1 = 0.43± 0.03 and is shown in Fig 2.2, with
χ2/d.o. f . = 2.01. We observe that both data sets are fitted well with the Regge form of Eq.(2.5),
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Figure 3: DVCS cross section as function of Q2 at fixed W (left panel), and as function of W at fixed Q2

(right panel). Solid lines represent a fit to the combined ZEUS and H1 data as explained in the text. Data are
from [5, 6, 7].

as it was found previously in color dipole or Regge based studies [12].
In summary, we presented an analysis of quark-nucleon scattering amplitudes. We considered

a basis of six independent Dirac-Lorentz structures and discussed their Regge behavior. Once
embedded into the handbag diagram to describe the DVCS amplitude in hard kinematics, we show
that only C-even (singlet) combinations of the direct and crossed channel contribute. We focused
on the contribution of a single Pomeron trajectory that dominates at high energies, and have
demonstrate that while for DIS the handbag formalism leads to the known result, F2(xB)∼ x−αP

B ,
in the case of DVCS it leads to divergent integrals in the collinear approximation. If collinear
approximation is not used, the model naturally leads to Regge-scaling for DVCS.
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