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I consider variations in the definition of a general-mass variable flavour number scheme (GM-
VFNS) for heavy flavour structure functions, both at next-to-leading order (NLO) and at next-
to-next-to leading order (NNLO).I also define a new “optimal” scheme choice improving the
smoothness of the transition from one flavour number to the next. At both NLO and NNLO I
investigate the variation of the structure function for a fixed set of parton distribution functions
(PDFs) and also the change in the distributions when a new MSTW-type global fit to data is
performed for each GM-VFNS. At NLO the parton distributions, and predictions using them at
hadron colliders, can vary by ∼ 2% from the mean value. Use of the the zero-mass variable
flavour number scheme, which is simpler but only an approximation, leads to results a further
couple of percent or more outside this range. At NNLO there is far more stability with varying
GM-VFNS definition. Typical changes in PDFs and predictions are less than 1%, with most
variation at very small x values. This demonstrates that mass-scheme variation is an additional and
significant source of uncertainty when considering parton distributions, but like other theoretical
uncertainties, it diminishes quickly as higher orders are included.
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GM-VFNS Variations R.S. Thorne

The treatment of heavy flavours, charm and bottom, in structure functions has an important
impact on the PDFs extracted in fits, due to direct data on F h

2 (x,Q2) and also the contribution
the total structure function at small x. There are two distinct regimes with different descriptions.
For Q2 ∼ m2

h massive quarks are created in the final state, and described using the Fixed Flavour
Number Scheme (FFNS) (see [1] for NLO results), F(x,Q2) =C

FF,n f

k (Q2/m2
h)⊗ f

n f

k (Q2), where n f

is the number of light quarks. This does not sum α n
S lnn Q2/m2

h terms in the perturbative expansion
which may be important. At high scales, Q2 � m2

h, heavy quarks behave like massless partons and
the logs are summed via evolution equations. The distributions for different light quark number
are related to each other perturbatively f

n f +1
j (Q2) = A jk(Q2/m2

H)⊗ f
n f

k (Q2), where the matrix
elements A jk(Q2/m2

H), calculated at O(α2
S ) in [2], contain the fixed-order ln(Q2/m2

h) contributions.
In the Q2/m2

h → ∞ limit the description is the Zero-Mass Variable Flavour Number Scheme (ZM-
VFNS), F(x,Q2) = C

ZMV F,n f
j ⊗ f

n f
j (Q2). This is approximate, ignoring all O(m2

h/Q2) corrections.
To correct this shortcoming and obtain a correct description between the two limits of Q2 ≤ m2

H

and Q2 � m2
H , one can use a General-Mass Variable Flavour Number Scheme (GM-VFNS).

The GM-VFNS can be defined from equivalence of the n f flavour and n f +1 flavour descrip-
tions at all orders, resulting in C

FF,n f

k (Q2/m2
h) = C

GMVF,n f +1
j (Q2/m2

h)⊗A jk(Q2/m2
h), e.g. at O(αS)

C
FF,n f ,(1)
2,hg (Q2/m2

h) = C
GMVF,n f +1,(0)

2,hh̄
(Q2/m2

h)⊗P0
qg ln(Q2/m2

h)+C
GMVF,n f +1,(1)
2,hg (Q2/m2

h), (1)

The VFNS coefficient functions tend to the massless limits as Q2/m2
h → ∞, but CGMV F

j (Q2/m2
h)

is only uniquely defined in this limit. One can swap O(m2
h/Q2) terms between CGMV F,(0)

2,hh̄
(Q2/m2

h)

and CGMVF,(1)
2,g (Q2/m2

h) in Eq. (1), and at higher orders, leading to various prescriptions [3, 4,
5, 6, 7]. The TR GM-VFNS [4] highlighted the freedom in choice, and enforced correct kine-
matics via a quite complicated definition. The (S)ACOT(χ) prescription [6] applied the sim-
ple choice CGMVF,(0)

2,hh̄
(Q2/m2

h,z) ∝ δ (z− xmax), which gives Fh,(0)
2 (x,Q2) ∝ e2

h(h + h̄)(x/xmax,Q2),
where xmax = Q2/(Q2 + 4m2

h), and imposes the threshold W 2 = Q2(1− x)/x ≥ 4m2
h. This gives

the usual limit CZMV F,(0)

2,hh̄
(z) = δ (1− z) for Q2/m2

h → ∞. The TR’ scheme [7] adopted this and
extensions to higher orders (though uses a different multiplicative factor of Q2/(Q2 + 4m2

h) [8]).
However, ACOT-type schemes have used the same order of αS above and below Q2 = m2

h, despite
the fact that FFNS is LO at O(αS) while ZM-VFNS starts at zeroth order. Instead the TR’ definition
uses, for example, at LO the O(αS) FFNS result for Q2 < m2

h, and for Q2 > m2
h

Fh
2 (x,Q2) = αS(m

2
h)C

FF,n f ,(1)
2,hg (1)⊗gn f (m2

h)+C
GMVF,n f +1,(0)

2,hh̄
(Q2/m2

h)⊗ (h+ h̄)(Q2), (2)

i.e. it freezes the higher order αS term when going upwards through Q2 = m2
h. This difference in

choice can be phenomenologically important. As an alternative, but ultimately equivalent, formu-
lation of a GM-VFNS, BMSN [2] and FONLL [8] define a scheme in general terms as

FGMVF(x,Q2) = FFF
2 (x,Q2)−Fasymp

2 (x,Q2)+FZMVF
2 (x,Q2) (3)

where the second (subtraction) term is the asymptotic version of the first, i.e., all terms O(m2
h/Q2)

are omitted. There are differences in exactly how the second and third terms are defined in detail
in different schemes. In the simplest applications the αS order of FFF(x,Q2) at low Q2 is the same
as that of FZMVF(x,Q2) as Q2 → ∞. There is a version of FONLL which uses one power higher in
the FFNS term, but it leads to part of the higher order contribution persisting as Q2 → ∞.
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Figure 1: The variation in Fc

2 (x,Q2) generated from a variety of choices of GM-VFNS at NLO (left) and
NNLO (right) using the MSTW2008 pdfs in each case.

scheme a b c d
GM-VFNS1 0 -1 1 0
GM-VFNS2 0 -1 0.5 0
GM-VFNS3 1 0 0 0
GM-VFNS4 0 0.3 1 0
GM-VFNS5 0 0 0 0.1
GM-VFNS6 0 0 0 -0.2
optimal 1 -2/3 1 0

Table 1: Parameter values for different ex-
treme GM-VFNS definitions.

Ideally one would like any GM-VFNS to reduce to
exactly the correct order FFNS at low Q2 and exactly
the correct order (one power of αS lower) ZM-VFNS
as Q2 → ∞. At present none do, but this can easily be
rectified. Let us return to the TR’ version of the GM-
VFNS. The obstacle is the presence of the frozen term
as Q2 → ∞ (which depends on the PDFs only at low
scales, so is a small effect at large Q2). In fact, this is
not strictly necessary and one can have instead

(m2
h/Q2)aαn

S (m2
h)∑CFF

2,i (m
2
h)⊗ fi(m

2
h) or (m2

h/Q2)aαn
S (Q2)∑CFF

2,i (Q
2)⊗ fi(Q

2). (4)

Any a > 0 provides the correct limit, though strictly from factorization one should have (m2
H/Q2)

times ln(Q2/m2
H) terms. There is also more freedom. One can modify the heavy quark coefficient

function as long as the Q2/m2
h →∞ limit is maintained. However, since this appears in convolutions

for higher order subtraction terms, we do not want a complicated x dependence. A simple choice is

CGMVF,(0)

2,hh̄
(Q2/m2

h,z) → (1+b(m2
h/Q2)c)δ (z− xmax), (5)

where again variation in c really mimics (m2
h/Q2) with logarithmic corrections. One can also

modify the argument of the δ -function, similar to the Intermediate-Mass IM scheme [9],

ξ = x/xmax → x
(

1+(x(1+4m2
h/Q2))d4m2

h/Q2), (6)

so the kinematic limit stays the same, but if d > 0(< 0) small x is less (more) suppressed. The
default a,b,c,d are all zero, but can vary, being limited by fit quality or sensible choices.

A variety of different choices defined in Table 1 has been tried at NLO and at NNLO along
with the ZM-VFNS (at NLO). The resulting variations in F c

2 (x,Q2) near the transition point due to
different choices of GM-VFNS at NLO are shown in the left of Fig. 1. I also define an “optimal”
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Figure 2: The variation of PDFs obtained from the best fit from a variety of choices of GM-VFNS and the
ZM-VFNS at NLO (left) and NNLO (right) as a ratio to the MSTW2008 PDFs.

scheme which is smooth at threshold and reduces to exactly the right limits at high and low Q2.
There is quite a spread at NLO, though the ZM-VFNS is far steeper at low Q2 than any GM-VFNS.
This spread is very much reduced at NNLO, the right of Fig. 1, with almost zero variation until
very small x, showing that NNLO evolution effects are most important in this regime.

PDF set Tev LHC (14 TeV)

σZ (nb) σH (pb) σZ (nb) σH (pb)
MSTW08 7.207 0.7462 59.25 40.69
GMvar1 +0.3% −0.5% +1.1% +0.2%
GMvar2 +0.7% −1.1% +3.0% +1.5%
GMvar3 +0.1% −0.3% +1.1% +0.8%
GMvar4 +0.0% −0.1% −0.4% −0.2%
GMvar5 −0.1% −0.1% −0.5% −0.3%
GMvar6 +0.3% −0.4% +1.6% +0.8%
GMvaropt +0.3% −1.5% +2.0% +0.4%
ZM-VFNS −0.7% −1.2% −3.0% −3.1%
GMvarcc +0.0% −0.1% +0.0% −0.1%

Table 2: Predicted cross-sections at NLO for Z and a
120 GeV Higgs boson at the Tevatron and LHC.

Global fits are also performed using the
same procedure as the MSTW08 fit [10] for
all schemes. At NLO the initial χ 2 for a new
scheme can change by 250, but converges
to within 20 of the original. There are im-
proved fits for options 1, 3 and 6 and the
fit is best for the for optimal scheme. The
variations in the partons extracted at NLO
are shown in the left of Fig. 2. The default
TR’ scheme sits near the low end. Some
changes in PDFs exceed the one σ uncer-
tainty. αS(M2

Z) changes by < 0.0007 except
for the ZM-VFNS where it falls by 0.0015.
The ZM-VFNS PDF is clearly outside than
the GM-VFNS band. For fits at NNLO the
initial changes in χ2 are < 20 and they converge to within 10 of the original. The variations in
PDFs extracted at NNLO are shown in the right of Fig. 2. At worst the changes approach the
uncertainty, but are usually far less. Variations in αS(M2

Z) are ∼ 0.0003. However, at NNLO the
TR’ scheme models the O(α 3

S ) FFNS terms at low Q2 using leading threshold logarithms [11] and
ln(1/x) terms [12]. The latter take the form ∝ (1− z/xmax)

ã(ln(1/z)− b̃)/z, where the default is
ã = 20, b̃ = 4, so ã and b̃ can be varied. Changes in ã make little difference. The maximum sensible
variation to b̃ = 2 leads to an effect of order the uncertainty at x ≤ 0.001. However, this is largely
eliminated if the O(α3

S ) contribution dies away, rather than being frozen.
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PDF set Tev LHC (14 TeV)

σZ (nb) σH (pb) σZ (nb) σH (pb)
MSTW08 7.448 0.9550 60.93 50.51
GMvar1 +0.1% −0.5% +0.1% −0.2%
GMvar2 +0.3% −0.8% +0.5% +0.1%
GMvar3 +0.4% −0.1% +0.5% +0.7%
GMvar4 +0.0% −0.2% +0.1% −0.1%
GMvar5 +0.1% −0.3% −0.2% −0.2%
GMvar6 +0.1% −0.9% +0.3% −0.2%
GMvaropt +0.4% −0.2% +0.6% +0.8%
GMvarmod −0.2% −0.4% −1.4% −1.0%
GMvarmod′ +0.0% −0.7% +0.0% +0.1%

Table 3: Predicted cross-sections at NNLO for Z and a
120 GeV Higgs boson at the Tevatron and LHC.

The predictions for cross-sections are
shown at NLO in Table. 2. There is at most
a 1.5% variation at the Tevatron. There is
a +3% down to −0.5% variation in σZ at
the LHC. The spread in σH is about halved
due to the higher average x sampled. The
ZM-VFNS is the clear outlier in the low di-
rection at the LHC. GMvarcc denotes vari-
ation in the GM-VFNS for charged current
processes, and clearly the effect is very
small indeed. The predictions at NNLO
are seen in Table. 3. Other than model de-
pendence – GMvarmod denotes the varia-
tion to b̃ = 2 in the O(α3

S ) term – the max-
imum variations are of order 0.5% at LHC.
GMvarmod’ is when the O(α 3

S ) falls with Q2, and also exhibits a very small deviation.
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