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We accelerate many-flavor lattice QCD simulations using multiple GPUs. Multiple pseudo-
fermion fields are introduced additively and independently for each flavor in the many-flavor
HMC algorithm. Using the independence of each pseudo-fermion field and the blocking tech-
nique for the quark solver, we can assign the solver task to each GPU card. In this report we
present the blocking technique for the many-flavor dynamical QCD simulations. We investigate
the effect of the blocking and the acceleration with the multiple GPUs for the Schrödinger func-
tional simulations with Wilson SU(3) plaquette gauge action and N f = 10 Wilson fermions. Five
pseudo-fermion fields are introduced and the quark solver task is distributed in the ratio of 2:3 to
two GPUs. We expect a 40% timing reduction from the single GPU case and have observed a
34% timing reduction in the test simulations.
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1. Introduction

The Large Hadron Collider (LHC) experiment has begun to trap the tail of Higgs boson and to
find the evidence of a theory beyond the standard model (SM). Motivated from the unnatural feature
of elementary scalar Higgs field, many models beyond the SM have been proposed and studied.
The technicolor (TC) model is one of them and describes the origin of electroweak symmetry
breaking without introducing elementary scalar particles. The TC is a scaled-up version of QCD,
but should have different features from the simple scaled-up QCD. The most promising TC models
should have a slowly running (=walking) coupling and a large mass anomalous dimension. The
non-perturbative feature of such models has been investigated using lattice technique over the last
years [1]. Especially the gauge theories with many fermions, which realize the walking feature, are
very attractive. Simulating the lattice gauge theory with many dynamical fermions is, however, a
heavier task than that for QCD, since the computational cost is roughly proportional to the number
of dynamical fermions. Improving the simulation algorithm with many dynamical flavors becomes
more important.

In this paper we present some techniques to improve the HMC algorithm with many dynamical
fermions using multiple GPUs. The application of GPU computing to lattice field theory has been
introduced by [2] and has been studied extensively in recent years [3, 4, 5]. However the parallel
GPU computations with field domain decomposition, which is usually employed for large-scale
QCD simulations, are still very challenging because there is no efficient device for direct commu-
nication among GPUs. Here we restrict our attention to a single node computation with multiple
GPU cards to accelerate the many flavor dynamical QCD simulations on a rather small lattice. We
develop a blocked algorithm for the HMC algorithm with many dynamical fermions and test the
algorithm for the Schrödinger functional (SF) simulations with the SU(3) gauge theory with ten
dynamical fermions (ten-flavor QCD). The performance is compared among the single GPU case,
the dual GPU case, and the case without GPU. The next section describes the fermionic part of the
HMC algorithm in a general form. We find a parallelism in the force computation of the molecular
dynamics of the HMC algorithm. We present the CPU and the GPU implementations in section 3.
The results are shown in section 4. The summary is given in the last section 5.

2. Many-flavor simulations

The fermion determinant in the HMC partition function is written by

det[D]N f , (2.1)

where D is a lattice Dirac operator and N f is the number of dynamical fermions. For simplic-
ity we assume that N f to be an even-number, det[D] = det[D†] holds, and the mass degenerates.
The determinant is evaluated by introducing pseudo-fermion fields in the HMC algorithm. There
are several ways to introduce the pseudo-fermion fields, additively or multiplicatively. Here we
introduce N f /2 pseudo-fermion fields φi additively.

det[D]N f =
∫ N f /2

∏
i=1

Dφ †
i Dφie−∑

Nf /2
i=1 |D−1φi|2 . (2.2)
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Algorithm 1 MD force computation in sequen-
tial version.

1: Pseudo-fermion fields {φi} are given.
2: for i = 1, · · · ,N f /2 do
3: Solve Dx = φi,→ x = D−1φi.
4: Solve D†y = x,→ y = D†−1x.
5: Accumulate Fµ = Fµ + f [x,y].
6: end for

Algorithm 2 MD force computation in blocked
version.

1: Fields Φ = (φ1,φ2, · · · ,φN f /2) are given.
2: Solve DX = Φ,→ X = D−1Φ.
3: Solve D†Y = X ,→ Y = D†−1X .
4: for i = 1, · · · ,N f /2 do
5: Accumulate Fµ = Fµ + f [xi,yi].
6: end for

In this form, N f /2 φi fields become independent each others. The exponent, together with the gauge
action and gauge kinetic term, constructs the effective action of the HMC algorithm as usual. We
need to compute the molecular dynamics (MD) force contribution from this effective action (2.2).
The general form of the MD force is written as

Fµ(n) =
N f /2

∑
i=1

Fµ,i(n), Fµ,i(n) = f [D−1φi,D†−1
D−1φi], (2.3)

where f [x,y] is a function of x and y derived from the derivative of the fermion action |D−1φi|2

with respect to the gauge field. By the additive introduction of the pseudo-fermion fields, the force
contribution Fµ,i can be computed independently. We make use of this coarse-grained parallelism
to employ multiple GPUs. However it is difficult to assign the task computing fully i-th MD force
Fµ,i to a single GPU because the MD force computation contains several steps and the GPU could
handle rather simple task to achieve its high efficiency. We extract the solver part from the force
computation and parallelize the solver part with multiple GPUs using a blocking technique. In the
next section we describe the details of extraction of the solver part and the blocking technique.

3. Implementation

3.1 CPU implementation

In this subsection we describe the blocking technique and the blocked solver algorithm em-
ployed for the CPU side computation in detail. Alg. 1 shows the compute step of the MD force
in the original (non-blocked) version, where the force is sequentially computed and accumulated.
This form is not suitable for the parallel execution of the solver. We reorganize the flavor do-loop
in the blocked form as shown in Alg. 2. where the working block vectors, X = (x1,x2, · · · ,xN f /2),
Y = (y1,y2, · · · ,yN f /2) are introduced. The linear equations are organized in the blocked form at the
2nd (3rd) line of Alg. 2.

To solve the linear equations the iterative solvers, such as CG, BiCGStab, GMRES etc., are
usually employed. The blocked form of the linear equations could have a benefit from sharing the
Krylov subspace among Dxi = bi and various blocked iterative solvers have been proposed and
explored. We implemented the Global BiCGStab (Gl-BiCGStab) [6] and the Blocked BiCGStab
(Bl-BiCGStab) [7] for the CPU side double-precision solver.

Our test problem is N f = 10 QCD with Wilson fermions. We employ the site even/odd pre-
conditioning. The blocked HMC algorithms are compared to the original version which uses the
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BiCGStab solver sequentially. On top of the blocking modification we can accelerate the blocked
solver using multiple GPUs.

3.2 GPU implementation

We employ GPU cards produced by Nvidia. The details of the GPU architecture is described
in [8]. We write the GPU codes in the CUDA language. To achieve high efficiency for the GPU
computation the task assigned to the GPU should be as simple as possible and should contain high
parallelism. The GPU computation has been applied to the quark solver and high efficiency has
been achieved in the case of a single GPU computation using the mixed-precision (or flexible)
preconditioner technique [4]. Based on these success we would like to assign one linear equation
Dx = b to one GPU even if we have many GPUs.

To accelerate the blocked solver using multiple GPUs we modify the Gl-BiCGStab to have the
mixed-precision preconditioning functionality according to the description in the appendix of [9].
We control the multiple GPUs using OpenMP threading on top of the CUDA environment. We have
implicitly assumed that the number of pseudo-fermion fields equals to the number of GPUs until
now. If this is not the case, some GPUs may solve several linear equations sequentially or may solve
nothing, which results in a load imbalance among GPUs. By this modification the single-precision
BiCGStab solvers on the GPUs are called in embarrassingly parallel in the preconditioning part of
the Gl-BiCGStab. We follow the tuning techniques described in [4] for the GPU solver.

Our test problem is N f = 10 QCD and five pseudo-fermion fields are introduced. The task
imbalance occurs since we have only two GPU cards. We distribute the task in the ratio of 2 : 3
to the two GPU cards, the one GPU solves the two equations sequentially and the other solves the
three sequentially. We also test the blocked algorithm with a single GPU where the five equations
are solved sequentially on the single GPU card. The speed up (reduction of timing) from the single
GPU case to the dual GPU case is expected to be 3/5 = 0.6. The single-precision coefficient matrix
D on the GPUs is also even/odd preconditioned as in the CPU side.

3.3 CPU SSE acceleration

The GPU implementation is highly optimized and the acceleration with GPU from the case
without GPU is almost obvious from the previous studies. It is fair for comparison to introduce a
more tuned solver for the CPU case. To get the best performance for the CPU case we also imple-
mented the single-precision solver using the SSE intrinsics in the C++ language and employed a
more aggressive preconditioner for the Wilson fermions. To use the multi-cores of a CPU efficiently
we employed the locally-lexicographical site ordered SSOR (ll-SSOR) preconditioner [10]. To re-
duce the memory bandwidth requirement the 3rd column of the SU(3) matrices is dropped from the
memory and is reconstructed on the fly. The SSE intrinsics are used entirely in the single-precision
solver. Instead of the single-precision GPU solver, the single-precision solver with the SSE and the
ll-SSOR preconditioner is sequentially called in the preconditioning part of the double-precision
Gl-BiCGStab for each pseudo-fermion.

4. Results

We test our algorithm on a PC box which has a single CPU and two GPU cards. The CPU is
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Intel’s Core i7 920 (4 cores) running at 2.67 GHz, and the GPUs are two Nvidia’s GeForce GTX
285 (240 cores) cards. The OS is CentOS 5.2 (Linux). Intel Fortran is used for the HMC algorithm
and C++ is partly used for the SSE acceleration. The GPU code is written with the CUDA 2.3. The
whole do-loops for lattice site are parallelized with OpenMP.

We test the algorithm described above on the SF setup with the SU(3) plaquette gauge and
N f = 10 Wilson quarks action on a 164 lattice. The action parameters are β = 4.52 and κ = 0.15805
which gives a rather strong coupling. To compare the solver residual history and the timing on the
same basis, we rerun the HMC algorithms (with/without various improvements) starting from the
same thermalized configuration.

Table 1 shows the test list of the combination of the solver algorithm, the number of GPUs,
and the SSE. The timing results are summarized in Table 2. A slight improvement in the solver
timing is observed in the case B owing to the localisation of the data access and the better use of
data cache by the blocking. The residual history for the case B (Gl-BiCGStab) is very similar to
that for the case A and no improvement on the iteration count is observed. The case C (Fig. 3) uses
the Bl-BiCGStab which shares the Krylov subspace effectively and we observed a 18% reduction
for the total iteration count from the case A (Fig. 1). This behavior agrees with [7]. The timing is
also reduced by 25%.

Figure 4 shows the result from the case D1. The case D2 also has the same history. The history
shows the residual for the single-precision GPU solver called within the Gl-BiCGStab solver. The
GPU solver is called three times in this case to achieve the double-precision solutions. The timing
is reduced by 87% for the case D1 (single GPU case) and by 92% for the case D2 (dual GPU case)
from the original timing as shown in Tab. 2. A factor of ten speed up has been observed in the
literature and we also obtain the similar result on the timing for the single GPU case. The speed up
from the single GPU case to the dual GPU case is 62%, which is close to the ideal speed up of 3/5
= 60%. The embarrassingly parallel execution of the GPU solver as a preconditioner works well.

As described in the previous section, we also implemented our best code for the CPU solver
to make a fair comparison among the CPU and GPU computations. Figure 5 shows the residual
history of the SSE single-precision-ll-SSOR preconditioned CPU solver. The iteration count does
not match with the previous figures in terms of the floating point number operation since four-
iterations are already included in the SSOR preconditioner. The timing is also given in Tab. 2 and
we observed a 69% timing reduction. A naive implementation of double-precision solvers is not
recommended for the Intel architecture. One must try various improvement techniques from the
algorithmic and architectural point of view.

In the 2nd column of Tab. 2 we tabulate the timing for a single trajectory of the HMC algo-
rithm. The timing is reduced by 34% from the Case D1 to the Case D2, and the number deviates a
little more from the ideal number 40% according to Amdahl’s law.

5. Summary

In this paper, we have shown the blocking technique for the many-flavor dynamical QCD
simulations. The blocking can suitably distribute the solver task independently to many GPU cards
attached to a single PC box. We have implemented two types of the blocked quark solvers and have
applied the mixed-precision technique with the single-precision facility of GPU and CPU. We have
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Case Solver # of GPUs SSE+ll-SSOR
A Non-Blocked(Original) BiCGStab 0 None
B Blocked Gl-BiCGStab 0 None
C Blocked Bl-BiCGStab 0 None

D1 Blocked Gl-BiCGStab/BiCGStab 1 None
D2 Blocked Gl-BiCGStab/BiCGStab 2 None
E Blocked Gl-BiCGStab/BiCGStab 0 Yes

Table 1: List for test case. A, B, C and E use only CPU. D1 and D2 use GPU(s). D1, D2, and E use the
single-precision BiCGStab solver with the mixed-precision technique.
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Figure 1: A sample of the residual history in the
case A. The five histories are overlaid for the five
linear equations.
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Figure 2: Same as Fig. 1, but for the case B.
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Figure 3: Same as Fig. 1 but for the case C.
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Figure 4: Same as Fig. 1, but for the case D1. The
case D2 also has the same history.

tested the blocked HMC algorithm for the Schrödinger functional simulations with the plaquette
gauge and ten-flavor Wilson quarks. We found the almost ideal speed up for the solver part using
dual GPUs. This algorithm has been being used to estimate the walking behavior of the coupling
in the SF scheme partly in the strong coupling region and to search a near conformal theory for the
TC model [11].

A part of the program development and the numerical simulations have been done on the IN-
SAM (Institute for Numerical Simulations and Applied Mathematics) GPU cluster at Hiroshima
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Figure 5: Same as Fig. 1, but for the case E.

Case
Averaged solver
timing in a trajec-
tory [sec]

HMC timing
for a trajectory
[sec]

A 30.9(1.0) 4097
B 25.1(0.2) 3346
C 23.1(0.1) 3094

D1 4.10(0.02) 565
D2 2.56(0.01) 374
E 9.53(0.05) 1280

Table 2: Timing comparison. The averaged solver
timing is for five linear equations.
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