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1. Summary of Semileptonic Calculation Methods Studied

In this work, we study stochastic and sequential methods forcalculating, f+(q2) and f0(q2),
the form factors relevant for the semi-leptonic decays,D → π lνl andD → Klνl . f+(q2), together
with perturbatively known factors can be used to extract CKMmatrix elements from the experi-
mental results for the differential decay rate. The form factors are extracted from the vector current
matrix element,〈D(pD)|Vµ |π(pπ)〉, which, on the lattice, is extracted from the three-point correla-
tor,

C3(T, t;~pD,~q) = e−i~pD·~x+i~q·~y
〈

M−1
u (~0,0;~x,T))γ5M−1

c (~x,T;~y, t)γµM−1
l (~y, t;~0,0)γ5

〉

, (1.1)

whereu, c, andl label the spectator-, heavy- (charm-like), and daughter-quark propagatorsM−1.
C3(T, t;~pD,~q) represents creating a pion at time 0, inserting the vector operator,Vµ = q̄uγµqc, with
momentum transferq at timet and destroying aD meson with momentumpD at timeT.

At first glance, eq. (1.1) presents a problem asC3 requires the calculation of the “all-to-all”
propagator,M−1

c (~x,T;~y, t), which is computationally too expensive to obtain. However, methods
exist to calculate this propagator in combination withM−1

l or alternatively to estimateM−1
c stochas-

tically. We compare the efficiencies of 3 different approaches to calculatingC3:
(a) The Sequential Propagator Method: this is the standard method currently used in calculations
of this type.C3 is computed by inverting the heavy-quark propagatorMc on a “Sequential Source”,
γ5ei~pD·~xM−1

u (~x,T;~0,0),

G(~y, t;~pD,T;~0,0) = ∑
~x

M−1
c (~y, t;~x,T)γ5ei~pD·~xM−1

u (~x,T;~0,0).

G(~y, t;~pD,T;~0,0) is combined withM−1
l and the appropriateΓ matrices to arrive at eq. (1.1).

(b) The Stochastic Propagator Method: this approach utilizesZ2 noise vectors,η [ℓ], ℓ = 1, . . . ,N,
with the property

1
N ∑

ℓ

η [ℓ]
i (x)η†[ℓ]

j (z) = δxzδi j +O(1/
√

N) (1.2)

can be used to compute the heavy-quark propagator directly,ψ [ℓ]
c (~y, t) = M−1

c (~y, t;~z,T)η [ℓ](~z,T).
(c) The One-end Method [1]: this method combines the stochastic and sequential approaches. The
sameZ2 noise vector is used to compute the heavy- and spectator-quark propagators,

ψ [ℓ]
c (~y, t) = M−1

c (~y, t;~z,T)ei~pD·~zη [ℓ](~z,T),

ψ [ℓ]
l (~w,0) = M−1

l (~w,0;~x,T)η [ℓ](~x,T). (1.3)

M−1
l is then used as a sequential source (with the momentum andΓ factors) for the daughter

product (u) solve.

The study, summarized below, is an extension of the initial work presented in Ref. [2]. Full
details of the comparison of the three methods can be found inRef. [3]. Following this, we present
preliminary results for the decay constantsfDs and fD.
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Figure 1: The relative error, averaged over the time slices,of V0(q2
max) for 7 different combinations

of even/odd (eo), spin (s), and color (c) partitioning as a function of the number of solvesNinvs

required to calculate the partitioned correlator from a single noise vector. All correlators are fully
time (t) partitioned.

1.1 Comparison of Noise Reduction Techniques

We focused our efforts on minimizing the noise in the Stochastic Propagator Method, making
the assumption that the same techniques are effective in theOne-end Method. In the end, we
found the most efficient noise reduction technique, simple time and spin partitioning [4], provides
a similar noise reduction in both methods. Comparisons and tests were performed on two QCDSF
ensembles withNf = 2 non-perturbatively improved clover fermions and latticespacings∼ 0.08
fm (see Ref. [3] for details). The behavior of the noise, which we quantify using the relative errors,
σ , is comparable on both ensembles.

The following ratio of correlators was used for comparing noise reduction techniques,

V0(q
2
max) =

C3(T, t;~p= 0,~q= 0)
Cπ

2 (t)C
D
2 (T − t)

, (1.4)

where lim
T≫t≫0

V0(q2
max) → 1

Zπ ZD
〈π(~0)|V0|D(~0)〉. This ratio is particularly convenient because it is

the statistically cleanest correlator, with~pπ = ~pD = 0. By comparing the relative errors ofV0(q2
max)

constructed with different combinations of time partitioning and the Hopping Parameter Accelera-
tion [5] we determined that full time partitioning is crucial for efficient noise reduction and hence
chose it as the basis of our partitioning scheme. Note that this does not increase our cost relative
to the Sequential Propagator Method, because that method isalso limited to using a single sink
time-slice to construct correlators.

Starting from full time partitioning, we tried all combinations of spatial (even/odd), color,
and spin partitioning, as shown in Fig. (1), for a single configuration with 100 noise vectors. The
pion source is fixed att = 0 and theD meson sink atT = 24 for all partitionings. The blue line
represents the expected, purely statistical, decrease of the noise with increasing the number of full
time partitioned vectors. Perhaps surprisingly, none of the alternative partitioning methods provide
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Computational Cost of the 3 Methods

1. Seq. Prop 12(ml )(Wsrc)(Cl )+12(mu)(Cl )+12(mu)(~pD)(Wsnk)(Ch)

2. Z2 Prop 12(ml )(Wsrc)(Cl )+12(mu)(Cl )+4N(Ch)

3. One-end 4N(~pD)(Wsnk)(Ch)+4N(mu)(Cl )+48N(mu)(~pπ)(ml )(Wsrc)(Cl )

Table 1: The approximate costs of the light-quark and heavy-quark solves are labels byCl andCh

respectively, whereCl ≈ 30Ch. The integer factors indicate the cost in inversions of a parameter
combination. The parameters are: (Wsrc/Wsnk) the number of source/sink smearings, (~pπ/~pD) the
number ofπ/D momenta, and (mu/ml ) the number of daughter/spectator quark masses.

significant improvement over exclusively using full time dilution: spin partitioning on its own
appears to have smaller errors, although the effect is small. This result is consistent over the other
configurations we examined, causing us to choose full time and spin partitioning as our preferred
variance reduction technique.

1.2 Cost Comparison Summary

The computational costs of these three methods are summarized in Table 1. Essentially, the
Stochastic Propagator Method offers greater flexibility than the Sequential Propagator Method, but
introduces stochastic noise that must be reduced. However,the greater flexibility in this method
allows correlators with all combinations of momenta to be generated with a fixed number of quark
inversions. These additional correlators are advantageous in two ways: additional correlators at
eachq2 are available for averaging, and additionalq2 data points are available to aid in theq2 → 0
extrapolations. The One-end Method is less flexible than theStochastic Propagator Method, but
could have greatly reduced statistical errors due to an additional volume average arising in the
correlators.

Data which are representative of the noise behavior are shown in Fig. (2) forq2
max; correlators

at additionalq2 were also examined and seen to have similar behavior. A simple comparison of the
errors shown in this figure, along with consideration for thecomputational costs, suggests that the
One-end method is not competitive with the other two methods.

In Ref. [3] an extensive analysis of the relative efficiencies of the Sequential and Stochastic
propagator methods is presented. It is seen that the additional rotationally equivalent correlators
available at fixed cost in the Stochastic approach results inan overall reduction of statistical errors
and a net gain in efficiency.

1.3 Matching and Results for the Form Factors

In order to connect our results to observables of phenomenological interest we perform the
matching andO(a) improvement of the vector current. The matching calculation takes the form,

Vcont
µ (q2) = ZV

[

Vµ(q
2)+aicV∂νTµν(q

2)
]

, (1.5)

whereTµν = ψ̄cσµνψl is the tensor current withσµν = i
2[γµ ,γν ]. The matching factorZV is known

non-perturbatively [6], while the coefficient of the improvement term,cV , is known to one-loop in
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Figure 2: The upper plot showsV0(q2
max) generated with the Sequential Method (red squares), the

Stochastic Method (blue circles) and the One-end Method (green triangles). The lower plot shows
the relative errors of each time-slice. 250 configurations were used.

mπ,sea Volume Nc f gs

∼ 380 MeV 243×48 393
∼ 270 MeV 243×48 348
∼ 170 MeV 403×64 336

Table 2: Lattice spacing is∼ 0.08 fm on all ensembles. 4 time sources per configuration have been
used on themπ,sea= 170 MeV andmπ,sea= 270 MeV ensembles. One time source, with random
location, was used for themπ,sea= 380 MeV ensemble.

perturbation theory [7]. The form factors extracted from the corresponding matrix element,〈Vcont
µ 〉

are shown in Fig. (3) for theNf = 2 ensemble withmπ,sea= 270 MeV. 24 spin-partitioned stochastic
sources were used (i.e. 96 inversions).

We extractf0(0) = f+(0) using theBK parametrization for theq2 → 0 interpolation [9]:

f0(q
2) =

c
1− q̃2/β

, f+(q
2) =

c
(1− q̃2)(1−α q̃2)

, (1.6)

whereq̃= q/m∗
D andm∗

D is the vectorD meson mass. The result forf+(0) = 0.593(19) is compara-
ble to previous determinations. The error shown is statistical only. We also investigated extracting
the form factor from the scalar matrix element, following the method of Ref. [8]. Consistent results
with slightly larger statistical errors were obtained.

2. Preliminary Results for the Decay Constants fD and fDs

In this section we present the calculation of the leptonic decay constantsfD and fDs using the
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Figure 3: Results using the Stochastic Propagator Method with 24 (×4 spin partitioned) stochastic
vectors and 539 configurations× 4 time sources.

three ensembles shown in Table 2. The decay constants are defined in terms of the axial-vector
matrix element,〈0|Aµ |Dq〉= ipµ fDq, where toO(a2) on the lattice,

Acont.
µ = ZA

[

1+
1
2

abA(mc+ml)

]

[

Aµ +aicA∂µP
]

(2.1)

ZA and andcA are known non-perturbatively [6] andbA to one-loop [7]. We extract the heavy-light
decay constant for light quark masses around the strange quark mass and lighter. We then per-
form a chiral interpolation/extrapolation using the continuum, partially quenched, NNLO HMχPT
expression derived in Ref. [10],

fD
√

MD = β (1+ω {chiral logarithms}+α0
vm2

π,val +α0
sm2

π,sea+α1
v m4

π,val +α1
sm4

π,sea), (2.2)

to obtain fD and fDs. However, we found our fits and extrapolations to be insensitive to the chiral
logarithms. At this point only a single lattice spacing,a ∼ 0.08 fm was used. Therefore our
discretization errors are currently unknown, although naively they are of orderO(a2m2

c). The fit
and extrapolation result, neglecting chiral logarithms, are presented in Fig. (4). The errors shown
in the figure are statistical only.

3. Outlook

Our study of semi-leptonic form factors has shown the Stochastic Method is flexible and cost-
effective: a wider range of momenta with reasonable statistics are obtained through averaging of
equivalent momenta compared to using the Sequential Method. We found that time partitioning is
the only beneficial variance reduction technique of those tested. We intend to exploit the Stochastic
Method further by studying decay involving radial excitations and decays to flavour singlet states.
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Figure 4: The chiral extrapolation and preliminary values for fD and fDs in terms ofr0 = 0.467 fm,
as determined in Ref. [11].

(Stifterband für die Deutsche Wissenschaft). Computations were performed on Regensburg’s
Athene HPC cluster and the SGI ICE 8200 at HLRN (Berlin-Hannover, Germany). The Chroma
software suite [12] was used extensively in this work.
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