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1. Introduction

The Berezinskii-Kosterlitz-Thouless (BKT) phase transition is known to take place in a variety
of two-dimensional (2D) systems, the most common being the 2D XY model [1]. Here we are going
to study an example of lattice spin model where this type of the transition shows up, namely the 2D
Z(N) spin model, also known as vector Potts model. On a 2D latticeΛ = L2 with linear extension
L and periodic boundary conditions, the partition function of the model can be written as

Z(Λ,β ) =

[

∏
x∈Λ

1
N

N−1

∑
s(x)=0

][

∏
x∈Λ

∏
n=1,2

Q(s(x)−s(x+en))

]

, Q(s) = exp

[

N−1

∑
k=1

βk cos
2πk
N

s

]

,

(1.1)
in the standard formulation withN−1 different couplings.

Some details of the critical behavior of 2D Z(N) spin models are well known – see the review in
Ref. [2]. The Z(N) spin model in the Villain formulation has been studied analytically in Refs. [3].
It was shown that the model has at least two phase transitionswhenN ≥ 5. The intermediate phase
is a massless phase with power-like decay of the correlationfunction. The critical indexη has been
estimated both from the renormalization group (RG) approach of the Kosterlitz-Thouless type and
from the weak-coupling series for susceptibility. It turnsout thatη(β (1)

c ) = 1/4 at the transition
point from the strong coupling (high-temperature) phase tothe massless phase,i.e. the behavior is
similar to that of theXY model. At the transition pointβ (2)

c from the massless phase to the ordered
low-temperature phase one hasη(β (2)

c ) = 4/N2. A rigorous proof that the BKT phase transition
does take place, and so that the massless phase exists, has been constructed in Ref. [4] for both
Villain and standard formulations (with one non-vanishingcouplingβ1). Monte-Carlo simulations
of the standard version withN = 6,8,12 were performed in Ref. [5]. Results for the critical index
η agree well with the analytical predictions obtained from the Villain formulation of the model.

Here we investigate the caseN = 5, the lowest number where the BKT transition is expected.
The motivation of our study is two-fold: (i) to compute critical indices at the transition points,
which could serve as checking point of universality; (ii) todevelop and test a Monte Carlo cluster
algorithm valid for odd values ofN, not yet available in the literature, to our knowledge.

2. Algorithm and numerical set-up

In this work we concentrate our attention to the model definedby Eq. (1.1) with only one
non-zero coupling,β1 ≡ β . The Hamiltonian of the model is

H =−β ∑
〈i j 〉

cos

(

2π
N

(si −sj)

)

, si = 0,1, . . . ,N−1 , (2.1)

with summation taken over nearest-neighbor sites. ForN = 2 this is the Ising model, whereas in
theN → ∞ limit we get theXY model.

A cluster algorithm for the Monte Carlo numerical simulation of this model is available in the
literature only for evenN [5]. Here we develop a new algorithm, valid instead for oddN, by which
an accurate numerical study of the model can be performed forN = 5, i.e. the smallestN value
for which the phase structure described in the Introductionholds. Here are the steps of our cluster
algorithm for the update of a spin configuration{si}:
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Figure 1: Scatter plot of the complex magnetizationML at β = 0.80,1.10,1.50 inZ(5) on a 642 lattice.

• choose randomlyn in the set{0,1,2, . . . ,N−1}

• build a cluster configuration according to the following probability of bond activation be-
tween neighboring sitesi j

pi j =

{

1−exp(−2β αiα j) if αiα j > 0
0 otherwise

, with αk ≡ sin

(

2π
N

(sk−n)

)

• “flip” each cluster, with probability 1/2, by replacing all spins belonging to it according to
the transformation

si → mod(−si +2n+N,N) ,

which amounts to replacing each spinsi in a cluster by the spinsj for which α j =−αi.

It is easy to prove that this cluster algorithm fulfills the detailed balance. We have tested the effi-
ciency of the cluster algorithm against the standard heat-bath algorithm and found that the cluster
algorithm is strongly preferable (see Ref. [6] for details).

The three phases exhibited by the 2D Z(5) spin model can be characterized by means of two
observables: thecomplex magnetization ML and thepopulation SL. The complex magnetization is
given by

ML =
1
L2 ∑

i
exp

(

i
2π
N

si

)

≡ |ML|e
iψ . (2.2)

In Fig. 1 we show the scatter plot ofML on a lattice withL = 64 in Z(5) at three values ofβ , each
representative of a different phase:β = 0.80 (high-temperature, disordered phase),β = 1.10 (BKT
massless phase) andβ = 1.50 (low-temperature, ordered phase). As we can see we pass from a
uniform distribution (lowβ ) to a ring distribution (intermediateβ ) and finally to five isolated spots
(high β ). The naive average of the complex magnetization gives constantly zero, thereforeML is
not an order parameter. A convenient observable to detect the transition from one phase to the
other is instead the absolute value|ML| of the complex magnetization. In Fig. 2 (left) we show the
behavior of the susceptibility of|ML|,

χ (M)
L = L2(〈|ML|

2〉− 〈|ML|〉
2) , (2.3)
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in Z(5) on lattices withL ranging from 16 to 1024 over a wide interval ofβ values. On each lattice
χ (M)

L clearly exhibits two peaks, the first of them, more pronounced than the other, identifies the
pseudo-critical couplingβ (1)

pc (L) at which the transition from the disordered to the massless phase

occurs, whereas the second corresponds to the pseudo-critical couplingβ (2)
pc (L) of the transition

from the massless to the ordered phase. It is evident from Fig. 2 that|ML| is particularly sensitive
to the first transition, thus making this observable the bestcandidate for studying its properties.

As a local order parameter to better detect the second transition, i.e. that from the massless to
the ordered phase, we chose instead thepopulation SL, defined as

SL =
N

N−1

[

maxi=0,N−1(ni)

L2 −
1
N

]

, (2.4)

whereni represents the number of spins of a given configuration whichare in the statesi . In a phase
in which there is not a preferred spin direction in the system(disorder), we haveni ∼ L2/N for each
index i, thereforeSL ∼ 0. Otherwise, in a phase in which there is a preferred spin direction (order),
we haveni ∼ L2 for a given indexi, thereforeSL ∼ 1. In Fig. 2 (right) we show the behavior of the
susceptibility ofSL,

χ (S)
L = L2(〈S2

L〉− 〈SL〉
2) , (2.5)

in Z(5) on lattices withL ranging from 16 to 1024 over a wide interval ofβ values. Again the peaks
signalling the two transitions are clearly visible and their positions agree with Fig. 2, but now the
second one is more pronounced.

Other observables which have been used in this work are the following:

• the real part of the “rotated” magnetization,MR = |ML|cos(5ψ)

• the order parameter introduced in Ref. [7],mψ = cos(5ψ),

whereψ is the phase of the complex magnetization defined in Eq. (2.2). For all observables con-
sidered in this work we collected typically 100k measurements, on configurations separated by
10 updating sweeps. For each new run the first 10k configurations were discarded to ensure ther-
malization. Data analysis was performed by the jackknife method over bins at different blocking
levels.

3. Numerical results

The first peak in the plot of the susceptibilityχ (M)
L (see Fig. 2 (left)) indicates the transition

from the disordered to the massless phase, while the second peak in the plot of the susceptibil-
ity χ (S)

L (see Fig. 2(right)) indicates the transition from the massless to the ordered phase. The
couplings where these transitions occur (from now on denoted as the pseudo-critical couplings
β (1,2)

pc (L)) have been determined by a Lorentzian interpolation aroundthe peak of the correspond-
ing susceptibility. Their values are summarized in Table 1.

In order to apply the finite size scaling (FSS) program, the location of the infinite volume
critical couplingsβ (1)

c andβ (2)
c is needed. In Refs. [8, 9] this was done by extrapolating the pseudo-

critical couplings to the infinite volume limit, according to a suitable scaling law. First order
transitions are ruled out by data in Table 1. Second order transitions, though not incompatible
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Figure 2: Behavior of the susceptibilitiesχ (M)
L (left) andχ (S)

L (right) versusβ in Z(5) on lattices with several
values ofL.

Table 1: Values ofβ (1)
pc andβ (2)

pc in Z(5) onL2 lattices.

L β (1)
pc β (2)

pc

16 0.8523(20) 1.1323(19)
32 0.91429(90) 1.1363(11)
64 0.95373(40) 1.13212(60)
128 0.98054(30) 1.12875(66)
256 0.99838(20) 1.12290(16)
384 1.00621(10) 1.12103(50)
512 1.01112(20) 1.11912(28)
1024 1.01991(10) 1.11596(38)

with data in Table 1, are to be excluded, due to the vanishing of the long distance correlations
combined with the clusterization property. Therefore, we assume that both transitions are of BKT
type and adopt the scaling law dictated by the essential scaling of the BKT transition,i.e. ξ ∼ ebt−ν

,
which reads

β (1,2)
pc = β (1,2)

c +
A1,2

(lnL+B1,2)
1
ν

. (3.1)

The indexν characterizes the universality class of the system. For example,ν = 1/2 holds for the
2D XY universality class.

Unfortunately, 4-parameter fits of the data forβ (1,2)
pc (L) give very unstable results for the pa-

rameters. This led us to move to 3-parameter fits of the data, with ν fixed at 1/2. We found, as best
fits with the MINUIT optimization code,

β (1)
c = 1.0602(20) A1 =−2.09(20) B1 = 0.27(18) χ2/d.o.f. = 0.48 Lmin = 64

β (2)
c = 1.1042(12) A2 = 0.578(41) B2 = 0. χ2/d.o.f. = 0.61 Lmin = 128

for the first and second transition, respectively. We observe thatβ (2)
c is not far from the value

of β (2)
pc on the largest available lattice, thus supporting the reliability of the extrapolation to the

thermodynamic limit. This is not the case forβ (1)
c , suggesting that the considered volumes could

5
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not be large enough for using the scaling law (3.1). For this reason, we turned to an independent
method for the determination ofβ (1,2)

c , based on the use of Binder cumulants.
In particular, for the study of the first transition, we considered thereduced4-th order Binder

cumulantU (M)
L defined as

U (M)
L = 1−

〈|ML|
4〉

3〈|ML|2〉2 , (3.2)

and the cumulantB(MR)
4 defined as

B(MR)
4 =

〈|MR−〈MR〉|
4〉

〈|MR−〈MR〉|2〉2 , (3.3)

while for the second transition we adopted againB(MR)
4 and the cumulantB

(mψ)
4 defined as

B
(mψ )
4 =

〈(mψ −〈mψ〉)
4〉

〈(mψ −〈mψ〉)2〉2 . (3.4)

Plots of the various Binder cumulants versusβ show that data obtained on different lattice volumes
align on curves that cross in two points, corresponding to the two transitions. We determined
the crossing points by two methods: (i) by interpolating with polynomial lines data on different
lattices near the crossing points and by looking for the intersection of these lines; (ii) by plotting
the Binder cumulants versus(β −βc)(logL)1/ν , with ν fixed at 1/2, and by looking for the optimal
overlap of data from different lattices, by theχ2 method. As a result of this analysis (for details,
see Ref. [6]) we arrived at the following estimates:β (1)

c = 1.0510(10) and β (2)
c = 1.1048(10).

While β (2)
c is compatible with the infinite volume extrapolation of the corresponding pseudocritical

couplings,β (1)
c is not, thus confirming the previous worries about the safetyof the infinite volume

extrapolation ofβ (1)
pc . It should be noted, however, that a fit toβ (1)

pc (L) with the law (3.1) and with

the parameterβ (1)
c fixed at 1.0510 gives a goodχ2/d.o.f., if only the three largest volumes are

considered in the fit.
The next step would be to extract other critical indices and check the hyperscaling relations

at the two transitions. This calls for the FSS of magnetizations and susceptibilities at the critical
couplingsβ (1,2)

c , which is in progress [6]. We present here only two determinations of theeffective

η index, defined in Ref. [8] as

ηeff(R)≡
log[Γ(R)/Γ(R0)]

log[R0/R]
, (3.5)

whereΓ(R) is the spin-spin correlation function andR0 an arbitrary parameter, chosen here equal
to 10. This quantity is constructed in such a way that it exhibits a plateauin R if the correlator
obeys the law

Γ(R) ≍
1

Rη(T)
, (3.6)

valid in the BKT phase,β (1)
c ≤ β ≤ β (2)

c . In Figs. 3 we show the behavior ofηeff(R) atβ = 1.0602,
which is slightly above the estimated value forβ (1)

c , and atβ = 1.1083, which is slightly above the
estimated value forβ (2)

c . A plateau is visible at small distances whenL increases and the extension
of this plateau gets larger withL, consistently with the fact that finite volume effects are becoming
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Figure 3: ηeff versusRatβ = 1.0602 (left) on lattices withL = 96,128,256,384,512,640,768,1024 and at
β = 1.1083 (right) on lattices withL = 64,128,256,384,512,1024.

less important. The plateau value ofηeff is about 0.225 atβ=1.0602, i.e. near the first transition,
and about 0.16 near the second transition. These values are not far from the expected ones (1/4 and
4/52, respectively). The determination ofηeff at β (1)

c andβ (2)
c is in progress [6].

In conclusion, we have determined the critical couplings ofthe 2D Z(5) vector model and given
a rough estimate of the critical indexη near the transitions. Our findings support the standard
scenario of three phases: disordered, massless or BKT and ordered. In a recent work [10] it is
claimed that the phase transition atβ (1)

c is not a standard BKT phase transition. We will comment
on this point in Ref. [6].
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