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1. Introduction

The Berezinskii-Kosterlitz-Thouless (BKT) phase traiositis known to take place in a variety
of two-dimensional (B) systems, the most common being ti2)XY model [1]. Here we are going
to study an example of lattice spin model where this type etthnsition shows up, hamely thB 2
Z(N) spin model, also known as vector Potts model. Odattice A = L? with linear extension
L and periodic boundary conditions, the partition functiéthe model can be written as

1 N—-1

Z(A.B) = [rlﬁ > ] [rl [1,Q(s00 —s(x-+ &)
Xe s(X)=0] [XeAn=1,

in the standard formulation witN — 1 different couplings.

Some details of the critical behavior dDZ(N) spin models are well known — see the review in
Ref. [2]. The Z{) spin model in the Villain formulation has been studied gtiedlly in Refs. [3].
It was shown that the model has at least two phase transitibesN > 5. The intermediate phase
is a massless phase with power-like decay of the correlétinetion. The critical index) has been
estimated both from the renormalization group (RG) apgraddhe Kosterlitz-Thouless type and
from the weak-coupling series for susceptibility. It tuimns thatn(Bc(l)) = 1/4 at the transition
point from the strong coupling (high-temperature) phasta¢éanassless phasee. the behavior is
similar to that of theXY model. At the transition poirﬁéz) from the massless phase to the ordered
low-temperature phase one ha(s,Béz)) — 4/N2. A rigorous proof that the BKT phase transition
does take place, and so that the massless phase exists,emasdostructed in Ref. [4] for both
Villain and standard formulations (with one non-vanishawgipling 3:). Monte-Carlo simulations
of the standard version witR = 6, 8,12 were performed in Ref. [5]. Results for the critical index
n agree well with the analytical predictions obtained from Yfllain formulation of the model.

Here we investigate the caBe= 5, the lowest number where the BKT transition is expected.
The motivation of our study is two-fold: (i) to compute ctdil indices at the transition points,
which could serve as checking point of universality; (ii)d®velop and test a Monte Carlo cluster
algorithm valid for odd values dfl, not yet available in the literature, to our knowledge.

, Q(s) = exp [Nzlﬂkcos—znksl ;
k=1 N
(1.1)

2. Algorithm and numerical set-up

In this work we concentrate our attention to the model defiogdEq. (1.1) with only one
non-zero couplingB; = B. The Hamiltonian of the model is

2
HZ—BZCOS(—”(S—SJ')> , §=01,...,N—1, (2.1)
m \N

with summation taken over nearest-neighbor sites. NFer 2 this is the Ising model, whereas in
theN — oo limit we get theXY model.

A cluster algorithm for the Monte Carlo numerical simulatiof this model is available in the
literature only for evemN [5]. Here we develop a new algorithm, valid instead for dddy which
an accurate numerical study of the model can be performel fer5, i.e. the smallestN value
for which the phase structure described in the Introdudtiolds. Here are the steps of our cluster
algorithm for the update of a spin configurati¢® }:
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Figure1: Scatter plot of the complex magnetizatibi at 3 = 0.80,1.10,1.50 in Z(5) on a 64 lattice.

e choose randomiyin the set{0,1,2,...,N —1}

e build a cluster configuration according to the following lpability of bond activation be-
tween neighboring site$

with ay = sin 2—”( n)
0 otherwise ’ k= N %

o = { 1—exp(—2B aiaj) if aiaj >0
ij —
¢ “flip” each cluster, with probability 1/2, by replacing aliss belonging to it according to
the transformation
s —» mod—s+2n+N,N),

which amounts to replacing each sginn a cluster by the spig; for which a; = —a.

It is easy to prove that this cluster algorithm fulfills theaked balance. We have tested the effi-
ciency of the cluster algorithm against the standard hatit-algorithm and found that the cluster
algorithm is strongly preferable (see Ref. [6] for details)

The three phases exhibited by the Z(5) spin model can be characterized by means of two
observables: theomplex magnetization Mand thepopulation $. The complex magnetization is
given by

1 2 i
ML= IZexp<|ﬁﬂs> = MY (2.2)

In Fig. 1 we show the scatter plot bf. on a lattice withL = 64 in Z(5) at three values g8, each
representative of a different phagg:= 0.80 (high-temperature, disordered phage); 1.10 (BKT
massless phase) affid= 1.50 (low-temperature, ordered phase). As we can see we paBRsafr
uniform distribution (lowB) to a ring distribution (intermediatB) and finally to five isolated spots
(high B). The naive average of the complex magnetization givestaotig zero, thereford/, is
not an order parameter. A convenient observable to detectréimsition from one phase to the
other is instead the absolute vald | of the complex magnetization. In Fig. 2 (left) we show the
behavior of the susceptibility aM, |,

xM = L2(M) — (MU)y?) (2.3)
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in Z(5) on lattices withL ranging from 16 to 1024 over a wide interval@fvalues. On each lattice
xEM) clearly exhibits two peaks, the first of them, more pronodniten the other, identifies the
pseudo-critical couplin@é?(L) at which the transition from the disordered to the masslags®
occurs, whereas the second corresponds to the pseudmlcdduplingﬁég)(L) of the transition
from the massless to the ordered phase. It is evident fron2Rigat|M, | is particularly sensitive
to the first transition, thus making this observable the bastidate for studying its properties.

As a local order parameter to better detect the second tiansie. that from the massless to
the ordered phase, we chose insteadpthygulation $, defined as

N [max_on-1(m) 1

TN L2 TN @4

wheren; represents the number of spins of a given configuration wdnielin the stats. In a phase
in which there is not a preferred spin direction in the systeisorder), we have; ~ L2/N for each
indexi, thereforeS ~ 0. Otherwise, in a phase in which there is a preferred spattion (order),
we haven; ~ L for a given index, thereforeS ~ 1. In Fig. 2 (right) we show the behavior of the
susceptibility ofS_,

X =12($) - (8)?), (2.5)

in Z(5) on lattices withL ranging from 16 to 1024 over a wide interval@falues. Again the peaks
signalling the two transitions are clearly visible and thmsitions agree with Fig. 2, but now the
second one is more pronounced.

Other observables which have been used in this work are Hoevfog:

e the real part of the “rotated” magnetizatidvig = |M_ | cog5¢)
e the order parameter introduced in Ref. [T}, = cog5y),

wherey is the phase of the complex magnetization defined in Eq..(EQ) all observables con-
sidered in this work we collected typically 100k measuretaenn configurations separated by
10 updating sweeps. For each new run the first 10k configmsatieere discarded to ensure ther-
malization. Data analysis was performed by the jackknifehme: over bins at different blocking
levels.

3. Numerical results

The first peak in the plot of the susceptibili]i(s{'vI> (see Fig. 2 (left)) indicates the transition
from the disordered to the massless phase, while the secaidip the plot of the susceptibil-
ity Xﬁs) (see Fig. 2(right)) indicates the transition from the messlto the ordered phase. The
couplings where these transitions occur (from now on dehatethe pseudo-critical couplings
Bé%’z)(L)) have been determined by a Lorentzian interpolation ardegheak of the correspond-
ing susceptibility. Their values are summarized in Table 1.

In order to apply the finite size scaling (FSS) program, treation of the infinite volume
critical couplingsﬁc(l) andBC(Z) is needed. In Refs. [8, 9] this was done by extrapolating seeigo-
critical couplings to the infinite volume limit, according & suitable scaling law. First order
transitions are ruled out by data in Table 1. Second ordesitians, though not incompatible
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Figure2: Behavior of the susceptibiliti@é"") (left) andxés) (right) versug3 in Z(5) on lattices with several
values ofL.

Table 1: Values ofﬁéé) andﬁég) in Z(5) onL? lattices.

L] & [ &

16 | 0.8523(20)| 1.1323(19)
32 | 0.91429(90) 1.1363(11)
64 | 0.95373(40)| 1.13212(60)
128 | 0.98054(30)| 1.12875(66)
256 | 0.99838(20)| 1.12290(16)
384 | 1.00621(10)| 1.12103(50)
512 | 1.01112(20)| 1.11912(28)
1024 | 1.01991(10)| 1.11596(38)

with data in Table 1, are to be excluded, due to the vanishfrifpenlong distance correlations
combined with the clusterization property. Therefore, wsume that both transitions are of BKT

type and adopt the scaling law dictated by the essentidhgoal the BKT transitionj.e. & ~ e,
which reads

12 12 Ao
pd - g Az
(INL+By2)v
The indexv characterizes the universality class of the system. Fanplgv = 1/2 holds for the
2D XY universality class.

Unfortunately, 4-parameter fits of the data ﬂpﬁ%’z)(L) give very unstable results for the pa-

rameters. This led us to move to 3-parameter fits of the datla,wfixed at 1/2. We found, as best
fits with the MINUIT optimization code,

(3.1)

B =1104212) A;=057841) B, =0. x*/dof. =061 Lmn=128

for the first and second transition, respectively. We ohsebkmtﬁc(z) is not far from the value
of Bég) on the largest available lattice, thus supporting the bélig of the extrapolation to the
thermodynamic limit. This is not the case fﬁ}l), suggesting that the considered volumes could
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not be large enough for using the scaling law (3.1). For thisson, we turned to an independent
method for the determination &1’2), based on the use of Binder cumulants.

In particular, for the study of the first transition, we caleied theeduced4-th order Binder
cumulantUL(M) defined as
M) _ (IMc[*)

(
uM =1-
: 3(IML[2)?

(3.2)

and the cumularBElMR) defined as

Mg (IMr— (MR)|*)
B = M (M) B2 (3:3)

)

while for the second transition we adopted ag%ﬁMR) and the cumularBElmw defined as

(my) My — (my))*)
BT (g — (mg))22 (3.4

Plots of the various Binder cumulants verglshow that data obtained on different lattice volumes
align on curves that cross in two points, corresponding &ttto transitions. We determined
the crossing points by two methods: (i) by interpolatinghapblynomial lines data on different
lattices near the crossing points and by looking for thergstetion of these lines; (i) by plotting
the Binder cumulants vers(g — ) (logL)YV, with v fixed at 1/2, and by looking for the optimal
overlap of data from different lattices, by tix& method. As a result of this analysis (for details,
see Ref. [6]) we arrived at the following estimate,(s‘él) = 1.0510110) and Bc(z) = 1.104810).
While BC(Z) is compatible with the infinite volume extrapolation of tt@esponding pseudocritical
couplings,Bc(l) is not, thus confirming the previous worries about the saféthe infinite volume
extrapolation otBé%). It should be noted, however, that a fitﬁé@(L) with the law (3.1) and with
the parameteﬁc(” fixed at 1.0510 gives a goog?/d.o.f., if only the three largest volumes are
considered in the fit.

The next step would be to extract other critical indices ameck the hyperscaling relations
at the two transitions. This calls for the FSS of magnetiretiand susceptibilities at the critical
couplingsﬁél’z), which is in progress [6]. We present here only two detertiona of theeffective
n index, defined in Ref. [8] as

log["(R)/T"(Ro)]
log[Ro/R| ’
wherel (R) is the spin-spin correlation function aiRg an arbitrary parameter, chosen here equal

to 10. This quantity is constructed in such a way that it exbil plateauin R if the correlator
obeys the law

Net(R) =

(3.5)

1

valid in the BKT phaseﬁc(l) <B< Béz). In Figs. 3 we show the behavior gig(R) at 3 = 1.0602,
which is slightly above the estimated value ﬂérl), and a8 = 1.1083, which is slightly above the
estimated value quC(Z). A plateau is visible at small distances wHeimcreases and the extension
of this plateau gets larger with, consistently with the fact that finite volume effects aredraing
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Figure 3: nes versusR at 8 = 1.0602 (left) on lattices with. = 96,128 256,384,512 640 768 1024 and at
B = 1.1083 (right) on lattices with = 64,128 256,384,512 1024.

less important. The plateau value mfs is about 0.225 a=1.0602, i.e. near the first transition,
and about 0.16 near the second transition. These valuestdia from the expected ones (1/4 and
4/5?, respectively). The determination g at Bc(l) andﬁc(z) is in progress [6].

In conclusion, we have determined the critical couplingsefD Z(5) vector model and given
a rough estimate of the critical index near the transitions. Our findings support the standard
scenario of three phases: disordered, massless or BKT aededr In a recent work [10] it is
claimed that the phase transitionﬁéfl) is not a standard BKT phase transition. We will comment
on this point in Ref. [6].
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