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1. Motivation

In noncommutative geometry, where the coordinate operatossitisfy the commutation re-
lation [X,, %] = 16y, @ mixing between ultraviolet and infrared degrees of freedom takes plac
[1]. So lattice simulations are a promising tool to get deeper insight into nonctatizeuquan-
tum field theories. For noncommutative U(1) gauge there exists an equivaddrix model which
makes numerical calculations feasible [2].

The main topic of the underlying contribution is to discuss the topological ehargoncom-
mutative U(1) gauge theory in two and in higher dimensions. In two dimensi@ng;#tanton
configurations carry a topological chargevhich was shown being non-integer [3, 4]. We work
out the definition of instantons in four and higher dimensions.

2. Topology and Instantons in QCD

The Lagragian of pure gluodynamics (the Yang-Mills theory with no matterdjdil Eu-
clidean spacetime can be written as

1

whereG,, is the gluon field strength tensor
Ghy = GuAS — 0, AT + TSR0 AS (2.2)

and fab¢ are structure constants of the gauge group considered. The clasgioal of the Yang-
Mills fields can be identically rewritten as

1 < 8
S— g [ MG =602 F 5 Q (2.3)
8g g
where Q denotes the topological charge
1 ~
Q=2 /d)(‘G,‘ijfw (2.4)
with 1
G?JV = Eguvaﬁecaxp (2.5)

3. Definition of the Topological Charge in Two Dimensions

3.1 Lattice Regularization of Noncommutative Two-Dimensional U(1Gauge Theory

The lattice regularized version of the theory can be defined by an ani@idson’s plaquette
action
S=-BY Y Uu(x)*Uy(x+aft) xUu(x+ad)"xU, (x)" +c.c. (3.1)
X U<V
where the symbofi represents a unit vector in thedirection and we have introduced the lattice
spacinga. The link variablesJ,,(x) are complex fields on the lattice satisfying the star-unitarity
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condition. The star-product [1] on the lattice can be obtained by rewritirtggfiaition within non-
commutatiuve derivatives in terms of Fourier modes and restricting the momentaBaltbein
zone.

Let us define the topological charge for a gauge field configuration ewligctretized two-
dimensional torus. In the language of fields, we define the topologicelelas

LSS U (x) Uy (x-+ 1) # Uy (x+ a0) T+ Uy ()" (3.2)
v

1= 4 4

which reduces to the usual definition of the topological charge in 2d ghegey

1
a= E_[/dzxgqu,uv (3.3)
in the continuum limit.

3.2 Matrix-Model Formulation

It is much more convenient for computer simulations to use an equivalemufation, in
which one maps functions on a noncommutative space to operators so thiartpeoduct becomes
nothing but the usual operator product, which is noncommutative. Thena@id) can then be
written as

S= —NB ; tr {0, (r0,r}) (M)} O} + 28N
HFEV

— N ; Hytr (V“VVVJVJ> + 2BN2 (3.4)
UZV

whereV,, = Ouru is a UN) matrix andN is the linear extent of the original lattice. An explicit
representation df , in thed = 2 case shall be given in Sec. 3.3. This is the twisted Eguchi-Kawai
(TEK) model [5], which appeared in history as a matrix model equivaletih¢dargeN gauge
theory [6]. We have added the constant tefiN2 to what we would obtain from (3.1) in order to
make the absolute minimum of the action zero.

By using the map between fields and matrices, the topological charge (8.B¢capresented

in terms of matrices as
1 A A o A
q= ;=N Y gt {Uu(ruuvr,ﬂ)(rvu,jrﬁ)uj}
uv
1

_ Tyt
= N ;suvo%“tr (vuvvv“vv) (3.5)

3.3 Classical Solutions

The classical equation of motion was worked out in the literature [7, 3] Boattion (3.4)
ViW-why, =w-w' (3.6)

with the unitary matrixV
W = 2,V Vo VIS (3.7)
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General solutions to this equation can be written in a block-diagonal form [7

V= e (3.8)

by an appropriate SU) transformation, wherﬂ}) arenj x nj unitary matrices,j = 1,... kK,
satisfying the 't Hooft-Weyl algebra

rord) = zhrdrd (3.9)

20) — 240 :exp<2mn;> (3.10)
nj+1

mj = > (3.11)

An explicit representation is given by the clock and shift operatQsndP
rg_J) = Pnj ) r(zl) = (an)mj (312)
The action and the topological charge can then be evaluated as [3, 7]

S— 4NBansin2{7T<r:_j—'\|\/ll>} (3.13)

j
_Noos m_M
q_wznjsm{mr(nj N)} (3.14)

In general, the topological charges not an integer. If we require the action to be less than of order
N the argument of the sine has to vanish forjalln that case the topological charge approaches
an integer

q:N(ij—M> (3.15)
J

being a multiple oN.

4. Definition of the Topological Charge in Four and Higher Dimensions

The lattice action (3.1) taking into account the star-product can be useg girmension. The
field-theoretic definition of the topological charge (3.2) can be extend&ddinvays.
One can rely on the so-called plaquette definition which then yields a profiwad plaquettes

1 N N
q(P’:@Z > EnvpoUp (X) % Uy (x+aft) Uy (x+ab) T« Uy, ()

X UVpo

*Up (X) *Ug (x4 ap) *Up (x+ad) T xUg(x)T (4.1)

which reduces to the definition of the topological charge in 4d gauge theory

1

P _ 1
T =3op

/ 4*X€4vpoGpuw * Gpo 4.2)

4
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in the continuum limit.
By using the map between fields and matrices, the topological charge (4.b¢capresented
in terms of matrices as

-1 R . R . . R R R
o7 = 25N S eupotr {0 (Mu0ur ) (MOIFD) 03 }{0p (Mp0oTh) (P03 ) OF |
uvpo
—1
= 352N Y Ewvpo ZuuZpolt (vuvvvJvvavavgv;) (4.3)
uvpo

Alternatively, one can rely on the so-called hybercube definition whidsléaa star-product
of matrices winding along the edges of the hybercube

-1 " " A " A N
q<H):@Z Z EuvpaUpu(X) *Uy (X+afl) xUp (x+aft +av) xUg (x+afi +av +ap)

X Uvpo

*Up(x+ab +ap +ad)") «Uy (x+ap +ad) ") U, (x+ad) +Us(x)1) (4.4)

which reduces to the definition of the topological charge in 4d gauge theory

1

H_ 1
T =3

/ 4% €40po Gy * Gpo (4.5)
in the continuum limit.

By using the map between fields and matrices, the topological charge (4.b¢capresented
in terms of matrices as

-1 A 1t 1 rtrt 1 ety et

(Fol ol UAT TS (Mol 0iThrd) (FoUSrE) U5 )

-1
= 5N > Euvpo ZuuZov Zop Zou Zov Zoult (v“vvvpvgvj vivi v;) (4.6)
uvpo
The extension to higher dimensions is straight-forward. In practical Stucli® can choose one or
more planes noncommutative while leaving the others commutative [8].

5. Conclusion and Outlook

Today there exist several investigations of the topological sector of thalimvensional non-
commutative U(1) theory [3, 4]. Also classical solutions are available. situation with the
field-theoretic definition of instantons is reminiscent of lattice QCD where tguamgauge field
configurations are topologically trivial and one needs to apply some smgqihicedure onto the
gauge fields to unhide instantons.

In this contribution we worked out the field-theoretic definition to four andharglimensions.
We demonstrated that both the plaquette and hybercube definition can beotaefrom the
commutative gauge theory by respecting the star-multiplication and applying thiortegomatrix
model.

It would be interesting to adapt cooling techniques from QCD to the four{uioaal non-
commutative U(1) theory [8]. At present we are working on this. It wdwddlisirable to send the
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noncommutativity parametet of the four-dimensional noncommutative gauge theory to zero in
order to obtain a realistic comparison of its topological content with the weliestudpological
objects like instantons and monopoles in QCD.

Unfortunately, the transcription of a monopole observable seems to beildiffithe analogy
to commutative U(1) theory of summing up the phases of the field over an eleynentze does
not obviously transfer to the U(N) theory in the matrix model. Finding a restderdefinition one
could be able to measure the monopole number on a noncommutative hypercube
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