PROCEEDINGS

OF SCIENCE

Thermodynamic quark susceptibilties in the PNJL
model

M. Cristoforetti*@, T. Hell®, B. Klein? and W. WeiseP’
a ECT* 138100, Villazzano (TN), ltaly
b TU Munich, Physik-Department, D85747, Garching,Germany
E-mail: nrcri stofo@ct . it

Applying Monte-Carlo methods to the Polyakov-loop extehddambu—Jona-Lasinio (PNJL)
model we go beyond the saddle-point approximation in a nfiedeh-calculation and introduce
fluctuations around the mean fields. The impact of fluctuatiom the thermodynamics of the
model in the two-flavor case becomes evident by studying ¢cerel-order Taylor expansion
coefficients of the thermodynamic grand-canonical partifunction with respect to the quark
chemical potential. Here we show a comparison with extepmis from lattice QCD. We find

that in order to reproduce lattice data for the flavor norgdieal quark susceptibilities the intro-
duction of fluctuations is unavoidable.
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1. Introduction

Results of QCD thermodynamics from lattice computatiorsraproduced surprisingly well
with a quasiparticle model, an extension of the Nambu—Jd@s#io model with inclusion of
Polyakov-loop dynamics (the PNJL model) at the mean-fieldlIg, 2, 3]. A better understanding
of the mechanism at the origin of these transitions requfresnvestigation of fluctuations in the
PNJL model [4]. Here we include fluctuations by performingnauical simulations of the ther-
modynamics using standard Monte-Carlo (MC) technique® ddvantage of this method is that
it automatically incorporates fluctuations to all orders.the present work we restrict ourselves
to fluctuations of the static zero-modes which lead to an avgment beyond the saddle-point
approximation.

We perform our analysis for the case of vanishing chemicedng@l where a comparison with
lattice simulation results is possible. In particular, wiél gee that the temperature dependence of
the flavor non-diagonal second derivative of the thermodyogrand-canonical partition function,
with respect to quark chemical potentials, is very sersitivthese fluctuations.

2. The PNJL patrtition function

The Euclidean action of the two-flavor PNJL model includimité baryon and isospin chem-
ical potentials is given by [5]

Fe(.F.0) = [ o [ {0+ - myw+ O[(@w) + @istw)?] )
B [ x%(9.B), @)

with 3 = 1/T. Herey is the Ny = 2 doublet quark fieldm = diag(m,,my) is the quark mass
matrix and the covariant derivative is

iD =iy, (0" — igAH). (2.2)

The quark chemical-potential matriy, is defined agi = diag| iy, Ld]-

The Polyakov-loop effective potential;, involves the gauge-field degrees of freedom denoted
by ¢ and models the confinement-deconfinement transition inuhe gauge theory at mean-field
level. In the PNJL model quarks interact with a backgrounbrcgauge fieldA, = iAg, where
Ao = 8,007 't2 with the gluon fieldsad' € SU(3); andt? = A23/2. The fieldA, is related to the
traced Polyakov loop according to

C

B
®= Nitrcl_ with L :exp<i / dTA4> . 2.3)
0
In Polyakov gauge, the matrixis given in a diagonal representation

L = exp(i(@A3 + @As)) , (2.4)

with the (diagonal) S(B) generators\s andAg. The dimensionless effective fields and ¢ are
identified with the Euclidean gauge fields in temporal dicectivided by the temperaturez(f) /T
andA&B) /T. These two fields parametrize the diagonal elements ¢8%U



Thermodynamic quark susceptibilties in the PNJL model M. Cristoforetti

In this paper we consider the ansatz for the effective patiegiven in [6, 7] motivated by the
SU(3) Haar measure which emerges when integrating out six of tte gluon fields:

U (P, T) 1

= —5aT)®" P+ b(T)In[1- 60" D+ 4(0+ %) —3(d"D)].  (2.5)
The temperature-dependent prefactors are given by
To To\ 2 T
a(T) = ao+a1<T>+a2<T°> and b(T)= b3<T°> . (2.6)

The particular choice a(T) andb(T) is such that we can reproduce the high-temperature behavior
of thermodynamic quantities like pressure, energy anapwptidensity. An additional constraint for
fixing the parameters is the critical temperature of the-brger deconfinement transition in pure
gauge QCDJy = 270 MeV, as given by lattice calculations, and the requirgnteat®*,® — 1 as
T — oo,

Given the action (2.1), the partition function of our systism

2 =
% = JV/_@qo@a_@nexp[Trln /d3 0T a 24(—3712)] . 2.7

whereg stands for the Polyakov loop fields and ¢. We write the pion fieldt = (1, 12, i°) in
terms of rt = \%(nli im?), = m® andt* = }(r1 £ir?), so that

T-Ti=V2(ttm +1- ")+ 131
The inverse quark propagator takes the form

si_ [ O+ (Hu—iA)y+ipn’—M iv2ysm"
- iv2yT — @+ (g —iAg) Y +iy —M

with the dynamical quark masd = my — 0 generated by the scalar fietd< 0. We work in the
isospin-symmetric limit withmg = m, = my for convenience. This scalar field is related to the
chiral (quark) condensate lyy= G({y).

3. PNJL model in a finite volume

In the present calculation we perform a step beyond meah-dighroximation by including
fluctuations of the zero modes of the relevant fields. Thigdisittedly only part of all possible
field fluctuations, but it represents nevertheless an ingmant with respect to the standard mean-
field calculation. These zero-mode fluctuations can bedntted considering a system defined in
a finite volumeV.

The partition function in momentum space is written as

02+712)]

oG (3.1)

¥ = /.@(p@d.@nexp[ (ZZTrIn (iwn, P)) — % (@, T) —

wherew, = (2n+ 1)7iT are the Matsubara frequencies.
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The presence of a volume factdrin the exponent of Eq. (3.1) makes it possible to compute
the full partition function in mean-field approximation mgiMonte-Carlo techniques. The size of
the volume is now specified according to the conventions taddp lattice calculations. For a fixed
extension of the lattice in the Euclidean time directiom, tdamperature is set by the lattice spacing
a, and the volume size is related to the temperature:

_ M_lT . V=NZR— o (3.2)
whereN; is the number of lattice sites in the Euclidean time diragtiandNs is the number of
lattice sites in the space direction. It follows that k/T2, where different values df= (Ns/N;)3
will be chosen for our purpose = 64,125 250,500, 1000 2500. The ratio between the smallest
and the largesk is approximately 40. In this way we can study systematicileydependence of
the observables on the volume size at fixed temperdturéhe typical lattice simulation volume
corresponds t& =64 .

N3
a S

4. Non-zero quark chemical potentials: Taylor expansion

The starting point for studying the thermodynamics Kgr= 2 quark flavors is the partition
function (3.1). The degrees of freedom in this case are!\ﬁf‘?eandA&B) components of the gauge
field and the bosonic field variablesand 7. In the NJL sector of the model we need to specify the
current quark massy, the coupling constar@ and the three-momentum cutdff The parameters
used here are the ones of Refs. [5, 6]:

mp = 5.5 MeV, G=10.1 GeV 1, A = 650 MeV.

These parameters are determined to reproduce pion pegpéntiass, decay constant) in the
infinite volume limit at zero temperature.

Dealing with non-zero quark chemical potentigigin lattice QCD thermodynamics is noto-
riously difficult because of the well-known fermion sign plem. A possible way of overcoming
this problem is the Taylor-expansion approach. Insteadeofopming an explicit calculation at
Hq # O, the thermodynamic potential is expanded in a Taylor sénigl;/T around zero chemical
potential,

Q(T,u)a%lnﬂfzioxijﬁ)(%)i (%)J (4.1)
NE

with
1 JtiQ
Xij (T) = i1 A(uy/T) 0 (ug/T)]

, 4.2)
Hu=Hd=0

where only even terms survive dued® symmetry. The coefficientg; (T ) are evaluated gty = 0.

The comparison between lattice data and Monte-Carlo tlonk for these coefficients in
the PNJL model represent an important test of this model.ahtiqular, the flavor non-diagonal
coefficient x1; that vanishes in the saddle-point approximation is of @gein this context: it is
necessary to take fluctuations of the mean field into accauntder to obtain a non-vanishing
result forx11.
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4.1 Second order Taylor expansion coefficients and susceptities

From the definition (4.2) we obtain the coefficients and xuq (quark susceptibilities)

1 92 T2 [V 0? 1 5
Xug = Wmlng_vﬁ <T<duuduq IndetS™ (T,Mu,IquG, 7T7A)>

AT 1 2
+<f> <<a—uulndet5“ (T,uu,ud,o,n,A)> >

NAAN ilndetgl(T o,7,A) i (4.3)
T auu 7“U7ud7 » It . -

The behavior of the flavor non-diagonal coefficieat = xuq is quite different from that of
all the other expansion coefficients: it vanishes in the lgaddint approximation whereas lattice
QCD clearly displays a non-zero signal for this quantityusuehT..

From a detailed analysis of (4.3) one can find that there awertain contributions to signal in
this channel: one is connected with fluctuationg\gfthe other with fluctuations of the pion field.
Both of these give zero in the saddle-point limit.

The pionic andAg contributions tgx,q resulting from the MC-PNJL computation are shown in
Fig. 1. Two characteristic features are immediately appaférst, the term involving pionic zero-
modes is strongly volume dependent and vanishes in the dimitfinite volume. Secondly, the
term associated with fluctuations of thg gauge field is independent of the box size and survives
in fact as the volume becomes infinitely large.
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Figure 1: Different contributions to the off-diagonal susceptityilx11 = Xuq for different volume ratiok
computed in the Monte-Carlo approach. Left panel: Contidloufrom pionic fluctuations, for which the
volume dependence is large. Right panel: Contribution ffluctuations of theAg field, which show a
negligible volume dependence.

4.2 Chiral effective Lagrangian

In order to better understand the role of the pionic fluctretiin the evaluation gfyq, let us
briefly digress and study this issue in the context of chiestyrbation theory (ChPT).

For low temperatures and small values of the chemical patetite physics is dominated by
the effects of light pions and we can describe the systenringef an effective chiral Lagrangian
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which expanded to second order in the pion figiflss given by
P = (0, (@) 1244 (7P + 280 [(Bo7) 72— (902 7]
ST 2P (4 ). (4.4)

In order to make contact with the results from the Monte-€axaluation of the PNJL model with
fluctuations of the mean field only, it is sufficient to take #tatic part of the Lagrangian into
account. The partition function for this static part is

. 3 VvV [1
Pstatic = / |_|1dnaexp{—f [énﬁnana—wlz(n*n‘)}}. (4.5)

From the definition ofy.q (4.3) we have

m _ 2 __2T2i
Xud' = VTng  k m2’

(4.6)

setting agairV = k/T3. This prediction can be compared directly with our Monted@#®NJL
results, provided we take the temperature dependence gfithemass into account, using the
relation given in [8].

Fig. 2 (right panel) demonstrates that the picture so obthfnom the chiral effective La-
grangian is completely consistent with our Monte-Carlccgkdtions in the PNJL model, as far
as the pionic contributions tg,q are concerned. From the figure it also follows that the chiral
perturbation-theory prediction for this coefficient isiadle until aroundr /T, ~ 0.7.
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Figure 2: Right panel: scaled pionic contribution to the off-diaglmesceptibility compared with the ChPT
prediction. All Monte-Carlo PNJL results are multiplied the volumeVy/Ves4 and therefore scale with the
k = 64 curve, using Eq. (4.6). Left panel: temperature depetalehthe flavor off-diagonal susceptibility
Xud in the Monte-Carlo approach to the PNJL model, uding64 (LT = 4). Lattice data [9, 10] with the
same volume aspect ratid and different pion masses are also shown for orientation.

4.3 Comparison with lattice data

Lattice-QCD studies of,q have been carried out for example in Refs. [9, 10], both Wwith64
but with different quark masses, corresponding to pion Bsmg = 230 MeV and 770 MeV. These
lattice results are compared to our Monte-Carlo PNJL coatjmris (using the physical pion mass)
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in Fig. 2. The shape of thg,q signal is quite well reproduced within the large error bafithe
lattice data. The difference between lattice results caetpbwith different pion masses is now
quite plausible. Given that the pionic fluctuations domenater those from thég component of
the Polyakov-loop field, this behavior is just what one expdémm Eq. (4.6). At the same time,
one would expect that lattice simulations performed igealith physical quark masses would
actually yield even larger magnitudes gfq than those wittm; = 230 MeV. The Monte-Carlo
results notably include only the pionic zero modes. Finii@mentum fluctuations would tend to
further increase the pionic effects yg.

5. Conclusions

In this work we have applied standard Monte-Carlo techréigoe PNJL model in order to go
beyond the saddle-point approximation. This becomes itapbwhen the system is considered in
a finite volume. The strength of the fluctuations introdugethis way depends on the size of the
volume.

The inclusion of such beyond-mean- field fluctuations in ddimolume does affect the sus-
ceptibilities significantly. We find that their impact is cial for the evaluation of higher-order
Taylor expansion coefficients of the pressure. Our resofhfa Monte-Carlo computation agrees
well with lattice data using the sankefor the Euclidean volume. The role of pionic zero-mode
fluctuations is clarified showing fully consistent resultishahose from chiral perturbation theory
for temperatures below.
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