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1. Introduction

The Sakharov explanation for the matter anti-matter asymmetry of the universe suffers from
the CP-violating phase of the Standard Model (SM3) falling short by at least 10 orders of mag-
nitude. In addition to this concern the Sakharov picture demands a first order electroweak phase
transition, which is also objected in the framework of the SM3. However, both of the above caveats
might be addressable [1, 2] by the inclusion of a new fourth fermion generation into an extended
version of the Standard Model (SM4). Despite the arguments against the existence of a fourth
fermion generation such a scenario nevertheless remains attractive for two reasons. Firstly, there is
a strong conceptual interest, since a new fermion generation would need to be very heavy, leading
to rather large Yukawa coupling constants and thus to potentially strong interactions with the scalar
sector of the theory. Secondly, it has been argued [1] (and the references therein) that the fourth
fermion generation is actuallynot excluded by electroweak precision measurements, thus leaving
the potential existence of a new fermion generation an open question.

In our contribution, however, we do not present any statement arguing in favour or disfavour
of a new fermion generation. Here, we simply assume its existence and focus on the arising conse-
quences on the Higgs boson mass spectrum. With the advent of the LHC this question will become
of great phenomenological interest, since the Higgs boson mass bounds, in particular the lower
bound, depend significantly on the heaviest fermion mass. Demonstrating this effect will be the
main objective of the present work.

Due to the large Yukawa coupling constants of the fourth fermion generation a non-perturbative
computation is highly desirable. For this purpose we employa lattice approach to investigate the
strong Higgs-fermion interaction. In fact, we follow here the same lattice strategy that has already
been used in Ref. [3] for the non-perturbative determination of the upper and lower Higgs boson
mass bounds in the SM3. This latter approach has the great advantage over the preceding lattice
studies of Higgs-Yukawa models that it is the first being based on a consistent formulation of an
exact lattice chiral symmetry [4], which allows to emulate the chiral character of the Higgs-fermion
coupling structure of the Standard Model on the lattice in a conceptually fully controlled manner.

2. Numerical Results

In order to evaluate the Higgs boson mass bounds we have implemented a lattice model of
the pure Higgs-fermion sector of the Standard Model. To be more precise, the Lagrangian of the
targeted Euclidean continuum model we have in mind is given as

LHY = t̄ ′∂/t ′ + b̄′∂/b′ +
1
2

∂µϕ†∂µϕ +
1
2

m2
0ϕ†ϕ + λ

(

ϕ†ϕ
)2

+yb′
(

t̄ ′, b̄′
)

L ϕb′R+yt ′
(

t̄ ′, b̄′
)

L ϕ̃t ′R

+c.c. of Yukawa interactions, (2.1)

where we have constrained ourselves to the consideration ofthe heaviest quark doublet,i.e. the
fourth generation doublet, which is labeled here(t ′,b′). This restriction is reasonable, since the
dynamics of the complex scalar doubletϕ (ϕ̃ = iτ2ϕ∗, τi : Pauli-matrices) is dominated by the
coupling to the heaviest fermions. For the same reason we also neglect any gauge fields in this
approach. The quark fields nevertheless have a colour index which actually leads toNc = 3 identical
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copies of the fermion doublet appearing in the model. However, for a first exploratory study of the
fermionic influence on the Higgs boson mass bounds we have setNc to 1 for simplicity.

The actual lattice implementation of the continuum model inEq. (2.1) has been discussed in
detail in Ref. [3]. Since the Yukawa interaction has a chiralstructure, it is important to establish
chiral symmetry also in the lattice approach. This has been along-standing obstacle, which was
finally found to be circumventable by constructing the lattice equivalent of∂/ as well as the left-
and right-handed components of the quark fieldst ′L,R, b′L,R on the basis of the Neuberger overlap
operator [4, 5]. Following the proposition in Ref. [4] we have constructed a lattice Higgs-Yukawa
model with a globalSU(2)L ×U(1)Y symmetry.

The fields considered in this model are the aforementioned doubletϕ as well asNc quark dou-
blets represented by eight-component spinorsψ̄(i) ≡ (t̄ ′(i), b̄′(i)), i = 1, ...,Nc. With D(ov) denoting
the Neuberger overlap operator the fermionic actionSF can be written as

SF =
Nc

∑
i=1

ψ̄(i)
M ψ(i), M = D

(ov) +P+φ† diag(yt ′ ,yb′) P̂+ +P− diag(yt ′ ,yb′)φ P̂−, (2.2)

whereyt ′,b′ denote the Yukawa coupling constants and the scalar fieldϕx has been rewritten here as
a quaternionic, 2×2 matrixφ†

x = (ϕ̃x,ϕx), with x denoting the site index of theL3
s×Lt-lattice. The

left- and right-handed projection operatorsP± and the modified projectorŝP± are given as

P± =
1± γ5

2
, P̂± = 1±γ̂5

2 , γ̂5 = γ5

(1− 1
ρ

D
(ov)
)

, (2.3)

with ρ being the radius of the circle of eigenvalues in the complex plane of the free Neuberger
overlap operator [5].

This action now obeys an exact global SU(2)L ×U(1)Y lattice chiral symmetry. ForΩL ∈
SU(2) andε ∈ IR the action is invariant under the transformation

ψ →UYP̂+ψ +UYΩLP̂−ψ , ψ̄ → ψ̄P+Ω†
LU

†
Y + ψ̄P−U†

Y, (2.4)

φ →UYφΩ†
L, φ† → ΩLφ†U†

Y (2.5)

with the compact notationUY ≡ exp(iεY) denoting the respective representations of the global
hypercharge symmetry groupU(1)Y for the respective field it is acting on. In the continuum limit
Eq. (2.4-2.5) eventually recover the (here global) continuum SU(2)L ×U(1)Y chiral symmetry.

Finally, the purely bosonic partSϕ of the total lattice actionS= SF +Sϕ is given by the usual
latticeϕ4-action

Sϕ = ∑
x

1
2

∇ f
µϕ†

x ∇ f
µϕx +

1
2

m2
0ϕ†

x ϕx + λ
(

ϕ†
x ϕx
)2

, (2.6)

with the bare massm0, the forward difference operator∇ f
µ in direction µ , and the bare quartic

coupling constantλ . For the practical lattice implementation, however, a reformulation of Eq. (2.6)
in terms of the hopping parameterκ and the lattice quartic coupling constantλ̂ proves to be more
convenient. It reads

SΦ = −κ ∑
x,µ

Φ†
x

[

Φx+µ + Φx−µ
]

+∑
x

Φ†
xΦx + λ̂ ∑

x

(

Φ†
xΦx−Nc

)2
, (2.7)
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and is fully equivalent to Eq. (2.6). This alternative formulation opens the possibility of explicitly
studying the limitλ = ∞ on the lattice. The aforementioned connection can be established through
a rescaling of the scalar fieldΦx ∈ IR4 and the involved coupling constants according to

ϕx =
√

2κ

(

Φ2
x + iΦ1

x

Φ0
x − iΦ3

x

)

, λ =
λ̂

4κ2 , m2
0 =

1−2Ncλ̂ −8κ
κ

. (2.8)

Due to the triviality of the Higgs sector the targeted Higgs boson mass bounds actually depend
on the non-removable, intrinsic cutoff parameterΛ of the considered Higgs-Yukawa theory, which
can be defined as the inverse lattice spacing,i.e. Λ = 1/a. To determine these cutoff dependent
bounds for a given phenomenological scenario,i.e. for given hypothetical masses of the fourth
fermion generation, the strategy is to evaluate the maximalinterval of Higgs boson masses attain-
able within the framework of the considered Higgs-Yukawa model being in consistency with this
phenomenological setup. The free parameters of the model, being the bare scalar massm0, the
bare quartic coupling constantλ , and the Yukawa coupling constantsyt ′,b′ thus have to be tuned
accordingly. The idea is to use the phenomenological knowledge of the renormalized vacuum ex-
pectation valuevr/a = 246GeV of the scalar fieldϕ as well as the hypothetical fourth generation
quark massesmt ′,b′ to fix the bare model parameters for a given cutoffΛ.

In lack of an additional matching condition a one-dimensional freedom is left open here, which
can be parametrized in terms of the quartic coupling constant λ . This freedom finally leads to the
emergence of upper and lower bounds on the Higgs boson mass. As expected from perturbation
theory, one also finds numerically [3] that the lightest and heaviest Higgs boson masses are obtained
at vanishing and infinite bare quartic coupling constant, respectively. The lower mass bound will
therefore be obtained atλ = 0, whileλ = ∞ will be adjusted to derive the upper bound.

Concerning the hypothetical masses of the fourth fermion generation quarks, we target here a
mass degenerate scenario withmt ′/a = mb′/a = 700GeV, which is somewhat above its tree-level
unitarity upper bound [6]. However, we are currently also investigating a set of other mass settings
to study in particular the quark mass dependence of the Higgsboson mass bounds.

κ Ls Lt Nc m2
0 λ yt ′ = yb′

0.09442 12,16,20,24 32 1 2.5910 0 3.2122
0.09485 12,16,20,24 32 1 2.5430 0 3.2049
0.09545 12,16,20,24 32 1 2.4767 0 3.1949
0.09560 12,16,20,24 32 1 2.4603 0 3.1923
0.09605 12,16,20,24 32 1 2.4112 0 3.1849

0.21300 12,16,20,24 32 1 ∞ ∞ 3.3707
0.21500 12,16,20,24 32 1 ∞ ∞ 3.3550
0.22200 12,16,20,24 32 1 ∞ ∞ 3.1816
0.22320 12,16,20,24 32 1 ∞ ∞ 3.1730
0.22560 12,16,20,24 32 1 ∞ ∞ 3.1561

Table 1: The model parameters underlying the lattice calculations performed in this study are presented.
The settingλ = 0 (λ = ∞) is employed for deriving the lower (upper) Higgs boson massbound. Depending
on the lattice volume the available statistics ranges fromNCon f = 1,000 toNCon f = 20,000.
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For the eventual determination of the cutoff dependent Higgs boson mass bounds several series
of Monte-Carlo calculations have been performed at different values ofΛ and on different lattice
volumes as summarized in Tab. 1. In order to tame finite volumeeffects as well as cutoff effects
to an acceptable level, we have demanded as a minimal requirement that all particle masses ˆm=

mH ,mt ′ ,mb′ in lattice units fulfillm̂< 0.5 andm̂·Ls,t > 3.5, at least on the largest investigated lattice
volumes. Assuming the Higgs boson massmH to be around 500− 750GeV this allows to reach
cutoff scales between 1500GeV and 3500GeV on a 243×32-lattice. However, despite this setting
strong finite volume effects are nevertheless expected induced by the massless Goldstone modes. It
is known that these finite size effects are proportional to 1/L2

s at leading order. An infinite volume
extrapolation of the lattice data is therefore mandatory.
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Figure 1: The finite volume data of the renormalized vacuum expectation valuevr (a,d), the Higgs boson
massmH (b,e), and the degenerate quark massmt′ = mb′ (c,f), as obtained from the lattice calculations
specified in Tab. 1, are plotted versus 1/L2

s. The upper (lower) row corresponds to the settingλ = 0 (λ = ∞).
The infinite volume extrapolation is performed by fitting thedata to a linear function. Due to the observed
curvature arising from the non-leading finite volume corrections only those data withLs ≥ 16 have been
respected by the linear fit procedures.

The finite volume data of the renormalized vacuum expectation valuevr , the Higgs boson
massmH , and the degenerate quark massmt ′ = mb′ resulting from the calculations specified in
Tab. 1 are presented in Fig. 1. For the details about the determination of the latter observables the
interested reader is referred to Ref. [3]. Here it is only stated that the renormalization constantZG

entering the renormalization of the scalar fieldϕ has been derived from the Goldstone propagator,
the Higgs boson massmH has been taken from the Higgs propagator, and the quark masses have
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been computed from the time correlation function of the respective fermionic fields. These lattice
data are plotted versus 1/L2

s and extrapolated to the infinite volume limit by means of a linear fit
ansatz according to the aforementioned leading order behaviour. Due to the observed curvature
arising from the non-leading finite volume corrections onlythose data withLs ≥ 16 have been
respected by the linear fit procedures. One finds that the intended infinite volume extrapolation can
indeed reliably be performed thanks to the multitude of investigated lattice volumes reaching from
123×32 to 243×32-lattices here.

The quality of the tuning procedure intending to hold the quark masses constant can then
be examined in Fig. 2b displaying the results of the infinite volume extrapolation ofmt ′ . In the
considered SM4 scenario the fluctuation of the quark mass hasbeen constrained to roughlymt ′ =

mb′ = 676±22GeV. For later comparisons with the corresponding SM3 scenario we also present
the analogous summary plot of our earlier investigations [3] of the latter setup where the degenerate
quark masses have been fixed to approximatelymt = mb = 173±3GeV as demonstrated in Fig. 2a.
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Figure 2: The infinite volume extrapolations of the degenerate quark masses observed in the lattice calcula-
tions specified in Tab. 1 are presented versus the cutoff parameterΛ. In the SM3 scenario (a) the fluctuation
of the quark mass has been constrained tomt = mb = 173± 3GeV, whilemt′ = mb′ = 676± 22GeV is
adjusted in the SM4 scenario (b).

The infinite volume results of the Higgs boson masses are finally presented in Fig. 3b. The
numerical data for the upper mass bound have moreover been fitted with the analytically expected
functional form of the cutoff dependence of the upper Higgs boson mass bound derived in Ref. [7].
It is given as

mup
H

a
= Am ·

[

log(Λ2/µ2)+Bm
]−1/2

, (2.9)

with Am, Bm denoting the free fit parameters andµ being an arbitrary scale, which we have cho-
sen asµ = 1TeV here. One learns from this presentation that the obtained results are indeed in
good agreement with the expected logarithmic decline of theupper Higgs boson mass bound with
increasing cutoff parameterΛ.
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The reader may want to compare these findings to the upper and lower Higgs boson mass
bounds previously derived in the SM3. The lattice results corresponding to that setup have been
determined in Ref. [3] and are summarized in Fig. 3a. The mainfinding is that especially the lower
bound is drastically shifted towards larger values in the presence of the assumed mass-degenerate
fourth quark doublet. From this analysis it can be concludedthat the usually expected light Higgs
boson seems to be incompatible with a very heavy fourth fermion generation.
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Figure 3: Upper and lower Higgs boson mass bounds are shown forNc = 1, mt = mb = 173±3GeV (a) and
Nc = 1, mt′ = mb′ = 676±22GeV (b). Both upper bounds are each fitted with Eq. (2.9). The lower bound
in (a) is also compared to a direct analytical computation depicted by the solid line as discussed in Ref. [3].
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