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1. Introduction

Much of the work in lattice QCD goes into the repeated sotutbDirac equation
DU)+my=n (1.1)

for varying sources) and/or gauge fieldd. Typically this is done with a Krylov solver such as
conjugate gradients (CG) or BiCGStab. These methods arerktmexhibit critical slowing down
where the time to solution increases rapidly as the quarksrisadecreased. This is because the
condition number of the Dirac matrix tends to diverge (fomege enough volume) as the mass
decreasesk(~ 1/m), while standard Krylov solvers become inefficient as thedittion number
grows (iterations’ v/k).

A lot of work has been done on developing deflation methodsrémove a set of low modes
(i.e., eigenvectors with small eigenvalues) from the splading to improvements in the solver
time [1]. However all these methods will require deflatingueriber of modes that scales linearly
with the volume, which then becomes more difficult as the m@Euncreases. An alternative is
to use the local deflation approach of Liischer [2] which splie low vectors into spatial blocks
which then gives a larger span of modes to deflate, and thusrameequire a number of vectors
that scales with volume. This splitting of vectors is simiia that done in multigrid methods [3]
which we describe here.

While multigrid methods have been very successful in otledddi their application to lattice
QCD has been difficult due to the complexity of the low modeshef QCD Dirac operator. We
have been working to apply the methods of adaptive multigri@CD starting with plain Wilson
quarks in 2d [4] and 4d [5]. Here we present the extension toldekr improved Wilson quarks
and show results of a production-ready implementationguia USQCD software libraries [6].

Adaptive multigrid: The main motivation behind multigrid is the observationt finatypical
linear systems (from discretized PDES) the low modes, whietresponsible for the poor conver-
gence of the solver, are smooth and therefore can be appatedmvell on a coarser grid which
reduces the effort required to solve for them. The problethés essentially split into two parts
with the high frequency components being solved on the malgifine) grid and the low modes
being solved on a coarse grid. The basic multigrid algoritonsists of alternating between a
relaxation step (smoother) on the fine grid using traditidieaative solvers (typically stationary or
Krylov) and a solve on a coarse grid. This procedure can beated recursively to solve the coarse
grid problem, reducing to coarser and coarser grids urgilcttarsest problem is small enough to
be easily solved.

The key components of the algorithm are the choice of smoathé the operators used for
the coarse solve: restrictioly, used to project the error from the fine lattice onto the amars
prolongation P, (or interpolation) used to bring the coarse grid correcback up to the fine level,
and the coarse operator itself. The multigrid procedurssiglly not used on its own and is often
used as a preconditioner for another solver. For our agjgitavith a non-Hermitian Wilson Dirac
operator and our choice of a non-stationary multigrid cywie use generalized conjugate residuals
(GCR) as the outer solver. Since the basic algorithm for Mdifermions has already appeared in
[5], here we will focus on the extensions to that algorithm.

Red-black preconditioning: The common approach to solving for the Wilson Dirac operator
on the lattice is to first employ red-black (even-odd) prefittoning which substantially reduces



Multigrid solver for clover fermions J. C. Osborn

the number of iterations needed to solve the system [7]. Viideiment this by splitting the linear
systemDx = b, into even €) and odd ¢) space-time sites as

Dee Deo | [ X\ [ be 1 DeDgg \ [ DesXe | [ be
(2222 (2) (2) - (o ™2) (22) - (2) - e

The mass term is now absorbed ifo In the preconditioned fornDy = b, on the right side of
(1.2), we can solve the reduced systd&yy. = b;, with

Dy = 1— DeoDogDoeDeet (1.3)
br = be— DeoDog bo , (1.4)

for the even sitesfe = DeeXe. The matriceDe andDy, are diagonal on the space-time lattice so
we can easily comput®, andb, and reconstructe = Dglye andx, = Dgg (b — DoeXe).

On the fine level, we use a GCR solver for the reduced sydiem.= b,. However the coarse
operator,ﬁ = RDyP, is a projection of the full even-odd preconditioned mafid). When solving
the coarse system we again use even-odd preconditioniravie the reduced coarse system. The
interpolation operatorR) is formed from the low modes of the the full preconditiong@torD .
One can easily see that the eigenvector® pandD, are the same on the even sites so that the low
modes of the two are related. For tgeHermitian Wilson Dirac operator, we constructed the re-
striction operatoR usingR = PTys. We also split the vectors that form@dnto the 2 chiralities in
addition to the space-time blocks, explicitly preservigglermiticity on the coarse level and help-
ing to avoid a nearly singular coarse operator. For the Witdover caseD, is not y5-Hermitian,
however we still use the same construction. Initial testsmialler Wilson lattices found a 30%
improvement using the preconditioning, so we have adopted clover lattices too.

Implementation: The multigrid solver has been implemented using the US DOBPAC
lattice QCD libraries [6] and in particular it is written ihé C language version of the QCD data
parallel layer QDP/C. This library has been extended toigeomnulti-lattice support and improved
arbitraryN; support which is used to implement the coarse level opexdtdnich look similar to a
staggered Dirac operator witth, equal to the number of vectors used to fdPrandR).

Since the single precision operations are generally faiséar double precision, we have im-
plemented the multigrid preconditioner in single pregisighile the outer GCR solver is in full
double precision. In all cases tested so far, single patis sufficiently accurate to provide a
good preconditioner for the Dirac matrix. For comparisortamventional Krylov solvers below
we have also included a mixed precision version of thosedbaseiterative refinement. Other
mixed precision methods such as reliable updates [8] mdgnpebetter at lighter masses, but we
do not expect this to make a large difference in the final tesul

In typical multigrid implementations, one has a choice offtany cycles of the coarse solve
and smoothing to perform at each level before going back tipetmext finer level. These choices
include the conventional V-cycle, where no extra cyclespadormed, or a W-cycle, where one
extra cycle at the coarsest level is performed, or some nupkisicated pattern. Here instead
of choosing the pattern up front, we implement the recursoieer in a truly adaptive fashion
where the coarse grid solver is again a GCR solver preconedi with another multigrid cycle,
and so on until the coarsest lattice, which is solved with @preconditioned GCR. At each level
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Figure 1: Time to solution (in seconds) for a single solve versus quozaks for various Krylov solvers and
multigrid. The left plot is for the 2%x 128 lattice and the right is for 32« 256.

we only specify the residual tolerance for each GCR solvachvthen lets the solver at each level
determine how many cycles are needed to reach the requedtednce. We ran the multigrid

solver with many different sets of parameters and found dhalerance of around 0.1 is usually
best. This means that the coarse solves do not need to be eégnaceurately. In all results below
the times reported were for the best set of parameters famttdt particular case.

2. Results

We have tested the multigrid algorithm on the Hadron Spett@ollaboration anisotropic
clover lattices [9]. We have run on lattices of sizé 24128 and 32 x 256 with spatial and temporal
lattice spacings ofs ~ 0.12 fm anda; =~ 0.035 fm. The light dynamical massn( = —0.086)
corresponds to; =~ 220 MeV. For reference the strange quark on these latticeslet@rmined to
bems &~ —0.0743, while the physical light quark mass would be aromne: —0.0867. The sizes
of the coarse lattices and number of low vectors used in steigdon and prolongation operators
are given in table 1. All results were obtained on 256 or 10##4¢< of a Blue Gene/P.

Figure 1 shows the time to solution for a single solve as atfonof the quark mass for
various solvers for the two lattice volumes. In all casesdbejugate gradients on the normal
residual (CGNR) performed worse than BiCGStab and the npxedsion solver performed better
than pure double precision. The multigrid solver performgmbetter than the others and shows
a much smaller increase in time as the quark mass is decrdaseithe larger volume the speedup
factor of multigrid compared to mixed precision BiCGStakalout 17x at the heaviest mass,
12.2x at the dynamical light mass and.8% at the physical light mass. On the larger volume we
see a sharper increase in time at the smallest masses cohtpahe smaller volume. We expect
that this could be improved with additional work in the setungl/or adding a fourth level.

In figure 2 we show the total time required to solve differenmier of right hand sides,
including the setup cost, on the larger volume. For small lmens of solves, BiCGStab is faster
due to the setup time needed for multigrid. As the number viesancreases multigrid becomes

lattice | cores| 1% coarse lattice # vectors in & P | 2 coarse lattice| # vectors in 2 P
243 % 128 | 256 8% x 16 24 43 x4 32
328 %256 | 1024 | 16x8x8x 32 24 43 %16 32

Table 1: multigrid parameters
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Figure2: Total time to solution including setup versugigure 3: Speedup of multigrid solver relative to
number of right hand sides for mixed precision (MPBICGStab versus setup time at the physical quark
BiCGStab and multigrid at different quark masses. mass.

faster due to the improved time per solution. The break ewént pecomes smaller as the quark
mass is decreased. At close to strange quark mass the grassiharound 10 full propagators
(of 12 solves each). At the dynamical mass the crossing idt firopagator and at the physical
mass it is about half a propagator (6 solves). Of course ibssiple to save the vectors and even
the coarse matrix to load back in for later analysis, so fafyais projects on saved configurations,
the setup cost should not be an issue. Only for configurameigation is the setup cost an issue.
Since the main focus for the implementation is currentlydoalysis, the setup code has not been
fully tuned and there is still room for improvement both aitfamically and in code optimization.

One still has some freedom to choose how much time to sperttiadtup procedure which
then affects the quality of the resulting solver. In figure @ plot the speedup for a single applica-
tion of the multigrid solver relative to BiCGStab versus time spent in the setup (in units of the
time for a single BiCGStab solve). These results were obthon the larger lattice at the physical
guark mass. If we spend about 6 BiCGStab solves worth of wotke setup we get a solver that
is about 2 faster than BiCGStab, which is what was used in the previgusds. If we lower the
setup cost to about 3 BiCGStab solves, then the solver spaeduces to around 1

We can see how this freedom can be used to optimize the totaliti figure 4. Here we
show the total solution time including setup versus numibesotves for the four different setups
shown in the previous figure. These runs were again done dartier lattice at the physical mass.
Here we see that the smallest setup time gives the best &farmance up to about 4 propagators
at which point the second smallest setup becomes best. Trdestiup takes over at around 8
propagators and the last at around 25. Thus if the setup iseiog saved for reuse at a later time,
one can optimize the setup for the particular work being done

In figure 5 we compare the performance of the 2-level and &8Hewltigrid algorithms for
both lattice sizes. For heavier masses the difference eet&eand 3 levels is small while both are
still better than BiCGStab. For lighter masses the 3 levgbrithm is clearly better and is about
2.5x better at the physical quark mass. As noted earlier theaserén time seen for the 3-level
algorithm at the lightest quark masses suggests that inmg tive coarse level with additional work
in the setup and/or adding a fourth multigrid level may bedbieral here.

In figure 6 we show how the relative speedup of multigrid ovee®@Stab varies with the re-
guested residual tolerance. These results are obtainkd physical mass. For the smaller volume
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Figure 4: Total time versus number of solves for diffFigure 5: Comparison of 2 and 3 level multigrid al-
ferent amounts of setup work on the332256 lattice gorithms on both lattice sizes.
at the physical mass.

the speedup appears to stay constant as the tolerance shangever for the larger volume, the
speedup tends to increase as the tolerance is lowered. Adusuitigrid algorithm is even more
effective for smaller tolerances.

Although the residual is typically used as the measure ofegence due to it being readily
available, what usually matters for observables is theaherror defined bye=D"b—x. Itis
related to the residualby r = b — Dx = De. Since the residual is the error multiplied by it is
not as sensitive to low modes. In figure 7 we plot the ratio ef tiagnitude of the error to the
magnitude of the residual versus the magnitude of the rakidu BiCGStab and multigrid at the
physical mass. In order to know the exact solution, we firke ta point sourcer), then solve
against that to get an approximate solutigrz D~1p. We set the right hand side to be= Dxg so
thatb is approximately a point source and its exact solution issknoThe error is very stable for
multigrid and stays at about 4050x the residual for both lattice volumes. The BiCGStab error
fluctuates wildly at about 5 10x larger than the multigrid error and appears to grow with padu

3. Setup procedure

Currently the setup procedure consists of a sequence dtexpeelaxations (inverse iteration)
on a random vectow, while monitoring the Rayleigh quoties D'Dv/v'v to determine when
the vector has converged well enough onto the low modes ofybhtem. During this process
we also keep the current vector globally orthogonal to thevipusly converged vectors. The
main motivation for implementing this setup procedure sssitmplicity since one doesn't need
to construct coarse operator until all the vectors are fouhds also relatively easy to vary the
number of iterations and the convergence criteria to tueectst of the setup and consequently
the efficiency of the resulting solver. However the main dragk of this procedure is that the
resulting vectors may be locally redundant within the bdWore sophisticated setup procedures
have been developed to avoid this problem. One such setuggue is used in the adaptive
smooth aggregatioraSA) method [10]. Here one constructs a multigrid cycle ouhefcurrently
available vectors and uses that solver to relax on randotergeahich will then give a new vector
which is rich in the modes that the current solver is bad ailvésy. This requires construction of
coarse operator several times during the setup proces$ atits to the complexity and possibly
also the time of the setup. A hybrid approach combining tipeeeedures was developed for the
Wilson case with promising results [5]. We plan to implemidng for the clover case in the future.

6
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Figure6: Speedup of multigrid over BiCGStab versu&igure 7: Ratio of magnitude of error to magnitude
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see the speedup increase as the tolerance decreasasd multigrid.

4. Summary and plans

We have developed an efficient implementation of a Wilsomasionultigrid solver, currently
being used in production for the calculation of disconngamgrams. For light quarks we see a
10— 20x reduction in time to solution. We also note that the erroeiy\stable and relatively small
compared to Krylov solvers and that the speedup and relatioe improves for larger lattices. We
are now in the process of testing it on larger lattices andingron optimizing the code so it can
be extended to even coarser lattices. Currently the sadvargreat improvement for medium to
large analysis projects where the setup cost can be antdizr many solves. We are working
to improve the setup process to provide the same or bettditygsalver and lower cost so that it
can be readily used in smaller projects or in configuratiomegation. Finally we are working on
multigrid for domain wall and staggered quarks, as well atippthese solvers to GPUs.
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