
P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
6

Domain Decomposition method on GPU cluster

Yusuke Osaki∗ and Ken-Ichi Ishikawa
Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima,
739-8526, Japan
E-mail: ozaki@theo.phys.sci.hiroshima-u.ac.jp
E-mail: ishikawa@theo.phys.sci.hiroshima-u.ac.jp

Pallalel GPGPU computing for lattice QCD simulations has a bottleneck on the GPU to GPU
data communication due to the lack of the direct data exchanging facility. In this work we investi-
gate the performance of quark solver using the restricted additive Schwarz (RAS) preconditioner
on a low cost GPU cluster. We expect that the RAS preconditioner with appropriate domain-
decomposition and task distribution reduces the communication bottleneck. The GPU cluster we
constructed is composed of four PC boxes, two GPU cards are attached to each box, and we
have eight GPU cards in total. The compute nodes are connected with rather slow but low cost
Gigabit-Ethernet. We include the RAS preconditioner in the single-precision part of the mixed-
precision nested-BiCGStab algorithm and the single-precision task is distributed to the multiple
GPUs. The benchmarking is done with the O(a)-improved Wilson quark on a randomly gener-
ated gauge configuration with the size of 324. We observe a factor two improvment on the solver
performance with the RAS precoditioner compared to that without the preconditioner and find
that the improvment mainly comes from the reduction of the communication bottleneck as we
expected.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ozaki@theo.phys.sci.hiroshima-u.ac.jp
mailto:ishikawa@theo.phys.sci.hiroshima-u.ac.jp

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
6

Domain Decomposition method on GPU cluster Yusuke Osaki

1. Introduction

The application of General-Purpose GPU (GPGPU) computing for lattice QCD simulations is
very attractive and there have been several studies in the literature [1, 2]. The most of the previous
GPGPU works for lattice QCD simulations have focused on the acceleration of the quark solver
using a single GPU card. However single GPU is not sufficient to simulate QCD with more realistic
lattice parameters, such as over 324 lattices with physical quark masses, due to the lack of memory
size and required sustained speed. Thus we need parallel GPGPU computing platforms with mul-
tiple GPU cards. This year several studies for lattice QCD simulations with/without multiple GPU
cards are reported in this conference [3]. In this paper we report our trial and benchmarking study
of the quark solver on a GPU cluster we developed.

One of the bottleneck of parallel computing is in the data communication among compute
processing units generally. Any multipile GPU system such as PC cluster with GPUs (= GPU
cluster) also has the same bottleneck. The situation is worse for the GPU cluster since there is no
on-board facility to directly exchange the data between GPU memories on distinct nodes. Typically
the data path consists of the PCI-Express path between host CPU memory and GPU memory, and
the LAN connection path between two host CPU memories. This causes a long latency and a slow
data throughput.

In the lattice QCD simulations the most compute and communication intensive part is the
multiplication of the lattice Dirac operator on fermion fields in the linear equation (quark) solver:

Dφ = η , (1.1)

where D is a lattice Dirac operator, φ and η are fermion fields. To solve Eq.(1.1), the Krylov
subspace solver algorithms, such as CG, BiCGStab etc., have been used. The naive use of the
Krylov solver requires many multiplication of D on a vector v such as w = Dv to obtain the solution
vector φ . The GPU acceleration can be applied to this operation. The bottleneck explained above,
however, degrades the performance of w = Dv operation. Thus the algorithmic reconsideration is
required to remove the bottleneck.

In this paper we study the additive Schwarz domain-decomposition preconditioner with/without
domain overlapping [4]. The additive Schwarz preconditioner is a kind of domain-decomposition
preconditioner for elliptic partial differential equations. Lüscher has introduced the Schwarz alter-
nating method to the Wilson-Dirac quark solver as the preconditioner and obtained enormous speed
up combined with the single precision acceleration technique [5]. The Schwarz alternating method
corresponds to the multiplicative Schwarz preconditioner and we expect a similar improvement for
the additive Schwarz method. We study this possibility with the O(a)-improved Wilson quark on a
moderate size lattice. The performance is measured on a GPU cluster we developed.

In the next section, we explain the details of the restricted additive Schwarz (RAS) domain-
decomposition iteration [6]. To accelerate the solver using multiple GPUs we employ the mixed-
precision nested-BiCGStab solver [2, 7, 8], and we apply the RAS method to the GPU side BiCGStab
solver as the preconditioner. The acceleration of the solver with the GPU and the RAS is explained
in section 3. We show the details of our GPU machine and the programming environment in
section 4. We test the effect of the RAS preconditioner varying the parameters of the RAS precon-

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
6

Domain Decomposition method on GPU cluster Yusuke Osaki

Figure 1: Lattice domain-decomposition and relation to the RAS iteration.

ditioner and study the bottleneck by investigating the timing chart of the algorithm. The results are
shown in section 5 and we give a brief summary for the results in the last section.

2. The Restricted Additive Schwarz domain-decomposition iteration

The restricted additive Schwarz iteration [6] is a kind of the fixed iteration solver for elliptic
differential equations. This solver makes use of the geometrical structure of a latticized partial
difference equation. In lattice QCD the discretized space-time can be split into several domains and
we show the schematic picture of the decomposition in Fig.1. Ωi represents the lattice sites in the
i-th domain without overlapping. Ω′

i denotes the domain extended from Ωi. The extended domains
are overlapped in general and the data in overlapped region are replicated on the neighbouring
domains.

To solve Eq. (1.1) without domain overlapping, we expect that the solution φ can be approxi-
mated by combining the partial solution of ξΩi derived from DΩiξΩi = ηΩi from each domain, where
DΩi is the restriction of D to Ωi with the Dirichlet boundary condition. The additive Schwarz (AS)
iteration simply approximates it as φ ∼ ∑i ξΩi , and the approximation is refined by the Richardson
iteration. A problem arises when we overlap the decomposition since the approximate solution
derived from the extended equation DΩ′

i
ξΩ′

i
= ηΩ′

i
becomes inconsistent in the overlapped region.

The restricted additive Schwarz (RAS) iteration gives a simple solution to this inconsistency. In
Fig.1 we denote the restriction operation as RΩi arrow which simply extracts the data on the bulk
sites (Ωi ∈ Ω′

i) to avoid the inconsistency. Thus the approximation to φ can be constructed as
φ ∼ ∑i RΩiξΩ′

i
. We show the RAS iteration in Alg. 1. The fourth line pickups the data on Ω′

i from
the whole field vector, the fifth line solves the target problem restricted in the overlapped domain Ω′

i

with the Dirichlet boundary condition, and the next line represents the restriction process described
above.

The RAS iteration itself is not sufficient for the complete solver, and is usually used as the
preconditioner for the Krylov subspace iterative solvers. We employ BiCGStab solver for the
Krylov subspace solver. The RAS preconditioner KRAS corresponds to the following operator;

KRAS = S
NRAS−1

∑
j=0

(1−DS) j, with S =
N

∑
i=1

RΩi(D
−1
Ω′

i
)PΩ′

i
. (2.1)

This is applied to the following preconditioned equation;

DKRASχ = η , φ = KRASχ, (2.2)

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
6

Domain Decomposition method on GPU cluster Yusuke Osaki

Algorithm 1 The RAS iteration. This calculates φ = KRASη ∼ D−1η with input η , and output φ .
1: set initial solution to φ = 0 and r = η .
2: for j = 0,1, . . . ,NRAS−1 do
3: for i = 1, . . . ,N (domain block index loop) do
4: rΩ′

i
= PΩ′

i
r. (Projection to domain Ω′

i.)
5: solve DΩ′

i
vΩ′

i
= rΩ′

i
for vΩ′

i
with the Dirichlet boundary condition.

6: vΩi = RΩivΩ′
i
. (Restriction to domain Ωi.)

7: end for
8: v = ∑N

i vΩi .
9: update φ = φ + v;r = r−Dv.

10: end for

where χ is to be solved with the Krylov subspace iterative solvers. Note that in the additive Schwarz
case, the domain equation can be solved independently from other domains and the domain index i
in Alg. 1 can be completely parallelized. We assign a single domain to a single GPU in this paper.

To obtain the best performance with the RAS preconditioner we should appropriately optimize
the following three parameters. The one is the depth of the overlapped region d. In Fig. 1 we show
the depth d = 2 case. The exact inversion in the individual domain is not required in the RAS
preconditioner and a fixed iteration solver with the iteration number Ndominv is usually used for
(DΩ′

i
)−1. The last parameter is NRAS. These parameters are surveyed in the benchmarking test.
The RAS preconditioner is a kind of generalized (blocked) Jacobi preconditioner. One can

expect that the performance of the RAS becomes more better as increasing the overlap depth d
since the equation in a domain approaches to the original equation. However it requires extra
works on the overlapped region and degrades the total performance. Therefore there should be a
optimal choice for d. The domain size also affects the performance. The larger domain size is
more better as the preconditioner but it reduces the domain parallelism. Overlapping domains has
a gain when it is used for the GPU acceleration because GPU can keep a high performance for
larger domain size. In the next section we explain the details of the GPU implementation of the
BiCGStab solver and the RAS preconditioner.

3. Accelerating Krylov solver with the Schwarz method and GPUs

The GPU architecture is originally dedicated for computer graphics application and shows
a great performance for the single-precision arithmetic. We employ the mixed-precision nested-
BiCGStab (flexible BiCGStab) algorithm [7, 8] to extract the single-precision performance effi-
ciently. The mixed-precision nested-BiCGStab consists of an inner and an outer BiCGStab solvers,
where the outer solver solely runs with the double-precision while the inner solver works with the
single-precision. The inner solver corresponds to the preconditioner to the outer solver and the
most of arithmetics are done within the inner solver side. Thus we can extract the best performance
of GPU by assigning the inner solver task to GPUs.

As described in the introduction the data communication is a bottleneck of the GPU acceler-
ated parallel computing. There is a possibility for the RAS preconditioner to reduce the bottleneck
by appropriately matching the domain-decomposition and the node allocation. In this paper we

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
6

Domain Decomposition method on GPU cluster Yusuke Osaki

split the lattice so that a single GPU is responsible to a single domain (block) and assign the RAS
preconditioner to the inner single-precision BiCGStab solver. In this manner we can extract the
true performance of GPUs since the domain equations of the RAS preconditioner are solved in
completely parallel without data communication.

The data communication arises in the 4th and 9th lines of Alg. 1. The Dv operation of the
9th line is always required for any iterative solvers and the 4th line (projection to Ω′

i) is the extra
communication arises in the RAS preconditioner. The performance gain from the RAS precondi-
tioner is expected when the total iteration count for the inner solver is sufficiently reduced by the
RAS preconditioner so as to beat the increase of the communication overhead from the projection
operation.

4. Machine and programinng

We construct a GPU cluster consists of four PC boxes. Each PC has a Intel Core i7 920
running at 2.67GHz, 6GBytes DDR3 memory, two GeForce GTX 285 GPU cards, and a single
Intel Gigabit ET Quad Port Server adapter. The Gigabit Ethernet connection is rather slow but we
make use of the four ports via the network trunking facility of the OpenMPI libraly. The operating
system is CentOS 5.3. The programing language we employed is Intel Fortran for the outer double-
precision BiCGStab solver (CPU host code) and NVIDIA CUDA 2.3 for the inner single-precision
BiCGStab solver and the RAS preconditioner (GPU code). To further improve the Gigabit Ethernet
performance, we use Open-MX protocol, which is freely available from [9], instead of TCP/IP.

We split the whole lattice with the size of NxNyNzNt into NGPU = 8 domains by dividing x-
direction only. We extend the domain size by adding extra ghost/overlap region in both upward and
downward x-directions to constact the overlapped domain-decomposition. The resulting domain
size becomes (Nx/NGPU + 2s)NyNzNt where s is the extension size and the depth of the overlap is
d = 2s. This one-dimensional splitting is preferable compared to the multi-dimensional splitting
in view of the communication overhead. The data structure is important to achieve the best perfor-
mance of the Nvidia’s cards. As described in Refs. [2, 10], we have to carefully arrange the data
ordering to extract the best performance. We assign a single CUDA thread to a single site. For the
details for the CUDA threading/blocking in lattice QCD simulations, see Ref. [2].

To clarify the bottleneck of the solver with the RAS preconditioner accelerated by multiple
GPUs we investigate the timing chart of the whole algorithm until the solver yields the double-
precision solution. In the next section we will show the computing and communication time for the
following region: T comm

proj for the communication time at the projection (4-th line of Alg. 1), T comm
Dv

for the communication time in the Wilson-Dirac operator multiplication (9-th line of Alg. 1 and
Eq. (2.2)), T calc

Dv the computation time in the Wilson-Dirac operator multiplication, and T calc
dominv the

computation time in the approximate inversion of the domain-restricted Wilson-Dirac operator.

5. Results

We measure the solver time using a random gauge configuration on a 324 lattice. The block
size for a single GPU becomes larger than 4× 323 which is enough size to extract the true per-
formance of the GPU. The parameters for the O(a)-improved Wilson-Dirac fermion are chosen to

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
6

Domain Decomposition method on GPU cluster Yusuke Osaki

be κ = 0.126 and cSW = 1.0 with which the solver converges after enough iteration for the timing
measurement. The solver stopping condition is |η −Dφ |/|η |< 10−14 with a Gaussian noise vector
η . We have investigated the performance of the RAS and GPU accelerated solver with the RAS pa-
rameters ranging in NRAS = 1–10 and Ndominv = 1–20 and find that the combination of NRAS = 3
and Ndominv = 5 is the best parameter for d = 0,2,4. In this section we show the results with the
best parameters only.

No prec. RAS(d = 0) RAS(d = 2) RAS(d = 4)

total time [sec] 53.305 27.977 35.234 37.195

GPU solver time [sec] 52.380 26.254 33.540 35.197
copy time [sec] 47.358 17.917 24.883 25.880

Dv operation count 1,328 484 496 416
total [sec] 48.243 18.246 18.441 15.546

Dv time T calc
Dv [sec] 3.900 1.424 1.436 1.205

T comm
Dv [sec] 47.358 17.917 18.111 15.269

T comm
proj [sec] - 0.0 6.772 10.611

T calc
dominv [sec] - 5.954 6.245 6.993

Table 1: Timings for performance comparison.

Table 1 shows the results from our benchmarking tests. The first column is the result without
preconditioning and the others are with the RAS preconditioner with d = 0,2,4 respectively. The
first row shows the timing for the convergence in double-precision and the second row shows the
timing of the GPU solver involved in the total time. Using the mixed-precision nested BiCGStab
algorithm, the most of the computation are done within the GPU solver as expected. The fastest
is obtained with the RAS without domain-overlapping and this is against the expectation for the
effect of the overlapped domain-decomposition.

The copy time represents the timing for the communication which consists of those in the Dv
multiplication (T comm

Dv) and in the projection (T comm
proj). The communation time dominates the total

time and the bi-directional bandwidth is observed to be ∼300 MByte/sec.
The next row counts the Dv operation in the GPU solver. With the RAS preconditioner the

Dv operation is much reduced from that without preconditioner as expected in section 3. However
overlapping domains does not reduce the Dv operation from d = 0 to d = 2, and only a slight
reduction is observed in the case from d = 0 to d = 4. The timings involved in the Dv operation are
shown in the next row labeled by “Dv time”. The Dv operation is dominated by the communication
time, although we hide the communication behind the bulk computation of Dv. Therefore the
reduction of the Dv operation count is almost identical to the reduction of the communication on
our GPU cluster.

The rows labeled by T comm
proj and T calc

dominv show the timings for the projection communication
and for the approximate inversion of the domain-restricted equation respectively. These timings
are the extra cost for the RAS preconditioner. From these results we observe that the Dv operation
count reduction in the d = 4 case does not help the total timinig reduction since the extra overhead
from the projection and the domain inversion exceeds the gain from the Dv operation reduction.

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
6

Domain Decomposition method on GPU cluster Yusuke Osaki

The same statement would hold even if there is a slight reduction of the Dv operation count in the
d = 2 case.

6. Summary

We have investigated the acceleration of the quark solver using multiple GPUs in parallel with
the combination of the RAS preconditioner and the mixed-precision nested-BiCGStab algorithm.
Parallel GPU benchmarking tests have been done on a GPU cluster constructed for low cost lattice
QCD simulations. The network device is slow compared to the speed of the GPU cards. Using the
RAS preconditioner with the appropriate domain-decomposition and the GPU task assignment, we
can reduce the data communication overhead and have observed a factor two improvement with the
RAS without domain-overlapping. However the overlapped domain-decomposition method does
not work well on our GPU cluster due to the extra overhead arising from the projection operation
and the inversion of the domain-restricted equation. The results with the RAS preconditioner is
still dominated by the communication time.

A part of the program development has been done on the INSAM (Institute for Numerical
Simulations and Applied Mathematics) GPU cluster at Hiroshima University. This work was sup-
ported in part by the Grant-in-Aid for Scientific Research of Japan Society for the Promotion of
Science (JSPS) (No. 20740139).

References

[1] G.I. Egri et al., Comput.Phys.Commun. 177, 631 (2007) [arXiv:hep-lat/0611022]; F.D. Renzo et al.,
Pos(LATTICE 2008)024; K. Barros et al., Pos(LATTICE 2008)045.

[2] M.A.Clark et al., Comput.Phys.Commun. 181, 1517 (2010); M.A. Clark, PoS(LATTICE 2009)003.

[3] B. Babich et al., LATTICE2010(2010), in these proceedings; S. Gottlieb et al., ibid.; H.-J. KIM et al.,
ibid.; Y.-Y. Mao et al., ibid.; B. Walk, ibid.; K.-I. Ishikawa et al., ibid.; C. Bonati et al., ibid.;
N. Cardoso et.al, ibid..

[4] B.F. Smith, P.E. Bjorstad and W.D. Gropp, Domain Decomposition: Parallel Multilevel Methods for
Elliptic Partial Differential Equations, Cambrige Univercity Press, 2004.

[5] M. Lüscher, JHEP 05 (2003) 052; Comput.Phys.Commun. 156, 209 (2004).

[6] X.-C. Cai and M. Sarkis, SIAM J. Sci. Comput. 21, 792 (1999).

[7] S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661 [hep-lat]].

[8] A. Buttari et al., ACM Trans. Math. Softw. 34,4:1-22 (2008).

[9] Open-MX, Myrinet Express over Generic Ethernet Hardware, http://open-mx.gforge.inria.fr/, and
references there in.

[10] NVIDIA corp., NVIDIA CUDA Programing Guide,
http://www.nvidia.com/object/cuda_home_new.html

7

