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We present a short introduction in vielbane (Möller) gravity theory and study a Schwarzschild 
solution and self-consistent solutions for Kaluza-Klein theories with spontaneous compactification, 
which can be obtained in this interesting generalization of General Relativity. 
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1.Introduction 

In this paper we describe an interesting generalization of General Relativity, suggested by 
C. Möller [1]. Save this little introduction and brief review Möller gravity, we are going to talk 
about exact solutions, which can be obtained in this theory. Namely, Schwarzschild solution and 
self-consistent solutions for Kaluza-Klein theories with spontaneous compactification. 

We are trying to find self-consistent solutions of kind M4
xSn. Where M4 is 4-dimensional 

Minkovsky space and Sn is n-dimensional sphere. Such solutions are useful to obtain after 
dimensional reduction effective 4-dimentional theories with CP-violation, which might be very 
interesting in particle and high energy physics[2,3]. But unfortunately, such solutions aren’t 
known to be in General Relativity (except the case n=1), so that we must consider other 
theories. 

The next motivation is an attempt to explain modern astrophysics data (such as rotation 
curves of stars in spiral galaxies) by means of gravity modification on large scales, without 
involving “Dark Matter” concept [4]. Very roughly speaking, the effects, which we might 
explain with dark matter, are strongly pronounced for spiral galaxies, and, quite the contrary, 
faintly pronounced for elliptical and dwarf spherical galaxies [5].  If so, we must find theory, in 
which Kerr-Solution, is vastly modified in comparison with Kerr-Solution in General Relativity. 
And, on the contrary, Schwarzschild solution, which described dwarf spherical galaxies, need 
only slight modification, or even doesn’t need ones. Vielbein gravity is good for this purpose, 
because it has this kind of solutions. 

And last, but not least: we are looking for a theory with faintly Lorentz symmetry 
violation. In Möller gravity theory, we have more restriction on frame vectors, then in General 
Relativity, because of additional asymmetric part of motion equations. Thus we have a hope to 
reveal Lorentz symmetry violation in some cases, when frame vectors give us a preferential 
direction in space-time because of this restriction.  In other words, we can obtain faintly Lorentz 
symmetry violation; because of the action of the theory is not invariant with regard to rotations 
of frame vectors in some cases. But in this paper we are not going to discuss this case. 

2.Vielbein (Möller) gravity theory 

It was C. Möller, who first offered this theory in 1978 [1]. Möller gravity theory is a 
metric theory, in which metric tensor 

3

0
( ) ( ) ( ) ( ) ( )g g g g gµν µ ν µ ν

α=

≡ δ αα α α ≡ α α∑ ,  { }( ) 1,1,1,1diagδ αβ ≡ −                                      (2.1) 

is constructed from orthonormal tetrad (vielbein): 
( ) ( ) ( )g g µ

µα β ≡ δ αβ                                                                                                            (2.2) 

Here indexes in brackets are frame (vielbein) indexes, which are altered from 1 to 4, and 
summation is considered over repeated indexes. Stress  tensor  (denoted as ( )f µνα ) for  this  

vector  fields  is, as usual:  

[ ]( ) ( )f gµν µ να ≡ ∂ α                                                                                                          (2.3) 

Where antisymmetrization over indexes in square brackets is considered. Coordinate indexes 
can be turned into vielbein indexes as it present below: 
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( ) ( )C g Cµν λ µνλα α ≡                                                                                                              (2.4) 

We can obtain Riche tensor from stress tensor: 
1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2
1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 4

R f f f

f f f f f

f f f f f f

αβ = ∂ α µµβ + ∂ β µµα + ∂ µ βαµ

+ ∂ µ αβµ − αβµ ννµ − βαµ ννµ +

− µνα νµβ − µνα µνβ + αµν βµν

                                                    (2.5) 

Where ( ) ( )g µ
µ∂ α ≡ α ∂                                                                                                      (2.6) 

By means of convolution we can produce from  stress tensor 3 different scalars: 

1L f f αβγ
αβγ≡ 2L f f βαγαβγ≡ 3L f fα βγ

αγ β≡                                                                           (2.7) 

Then, in the general case, the simplest quadratic in partial derivative action is: 

( )0 1 1 2 2 3 3
X

S k k L k L k L gdx= + + +∫                                                                                    (2.8) 

Where 0k , 1k , 2k , 3k  are arbitrary dimensional constants. 
Using (2.5) we can obtain more usual expression for Einstein-Möller action (accurate within full 
divergence ): 

( )0 3 1 1 2 2
X

S k k R k L k L gdx′ ′= + + +∫
                                                                                          (2.9) 

We can not write for action terms of kind third and fourth, if we use metric tensor itself without  
fielbeine formalism. Thus we have generalization of any metric gravity. 
As we can see, Möller gravity theory coincides with General Relativity, if 1k ′ , 2k ′ is equal to 0. 

Denote action variation over ( )g αµ  as 1( )
( )
SX

gg
α

α

δ
µ ≡

δ µ
,                                (2.11) 

we can write symmetric and asymmetric part of motion equations 1( ) 0
( )
SX

gg
α

α

δ
µ ≡ =

δ µ
 

separately. Symmetric part: 

( ) ( ) ( )

( ) ( )
3 1 2 1 2 [ ]

( ) ( ) [ ]

( )
1 2 2 1 2

14 2 2 2
2

2 2 2 0

X k R g R k k f k k f f

k k f f k f f g k f f k f f

µ µν
αβ αβ αβ αβ µ µν α β

µν α β α βµν αβ µνλ µνλ
µν µν µνλ νµλ

⎛ ⎞ ′ ′ ′ ′= − − + Λ + + ∇ − − +⎜ ⎟
⎝ ⎠

′ ′ ′ ′ ′+ + − + + =
         (2.11) 

Asymmetric part: 
( ) ( )[ ] [ ] [ ]

1 2 2 1 22 2 4 2 3 0X k k f k f k k f fαβ αβ µ µαβ µν α β
µ µ µν′ ′ ′ ′ ′= − ∇ − ∇ − − =                       (2.12) 

if 1k ′ , 2k ′ is equal to 0, asymmetric part vanish, and symmetric part gives us General Relativity. 
As we can see in Möller gravity theory, we have more restriction on frame vectors, then in 
General Relativity, because of additional asymmetric part of motion equations. 

3.Schwarzschild solution in Möller gravity 

In this paragraph small latin letters are altered from 1 to 3. Let us write well-known 
Schwarzschild metric in the following way:  
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( ){ }2 2 ( ) 2 2 ( ) 2 2 2 2 2sinr rds e dt e dr r d dγ α= − + + ϕ + ϕ χ                                                              (3.1) 

Ansatz for metric tensor: 
2

2
0

0 pq

e
g

e g

γ

αβ α

⎛ ⎞−
= ⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                                                    (3.2) 

Ansatz for the vielbein:  

0(0)g eγ=  ( ) ( )q qg a e g aα=  (0) 0qg =  0( ) 0g a =                                (3.3) 
0(0)g e−γ=  ( ) ( )q qg a e g a−α=  

Where ( )qg a  is orthonormal set for 3-dimensional flat space. 
cos

si(1)
0

nqg r
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

ϕ
− ϕ

 

sin cos
cos cos
sin si

(2)
n

qg r
r

− ϕ χ
− ϕ χ

ϕ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜
⎝ ⎠χ ⎟

 

sin sin
cos sin
sin cos

(3)q rg
r

− ϕ χ
− ϕ χ
− ϕ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜
⎝ ⎠χ

⎟
                  (3.4) 

After some boring permutations we can obtain 3 equations for two parameters: 

( )2 1 2 2 2 1
, , , , , , , , ,2 4 2 2 2 4

2rr r r r rr r r r rr e r− α −Λ
α +α + α = + κ α − γ − γ − α γ − γ                              (3.5) 

( )2 1 1 2 2 2 1
, , , , , , , ,2 2 2 2 4

2r r r r r r r rr r e r− − α −Λ
α + α + γ α + γ = − κ α + γ + α                                    (3.6) 

( )1 1 2 2 2 1
, , , , , , , , , ,

1 2 2 2
2rr r r rr r rr r r r rr r e r− − α −α + α + γ + γ + γ = Λ + κ − α + γ − α γ − α                  (3.7) 

Where 1 2

3

2
2

k k
k
′ ′+

κ ≡                                                                                                        (3.8) 

If so, whether system is overdetermined, or these equations are not independent. It can be 
shown, that system has solutions only if κ =0. But if so, we have the same system as in General 
Relativity!  In other words, Möller theory has the same Schwarzschild solution, as it appears in 
General Relativity. Peculiar moment is that, then this solution appears not only in case, when 
the constants of the theory are small, as was shown by Möller [1], but in case of arbitrary 
constants too, when the relation 1 22 0k k′ ′+ =  is valid. If this relation is broken, there is no 

spherical symmetric Schwarzschild-like solutions in Möller gravity theory. 

4.Self-consistent solution of kind M4
xS3 with spontaneous compactification 

In this paragraph large latin letters are altered from 0 to 7, except 4,  small latin 
letters are altered from 0 to 3 and small greece letters are altered from 5 to 7. As it 
mentioned above, manifold is M4

xS3. Ansatz for the vielbein is shown below: 
( ) ( ) ( ) ( )Ag x h xλ

µ µα = α  depends only from  4-dimentional coordinates                               (4.1) 

( ) 0qg α =                                     (4.2) 

( ) 0g a µ =                                     (4.3) 

( ) ( ) ( 4) ( )A l
q qg a x rg a x= −

 
 depends only from additional coordinates                                  (4.4) 
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Where ( )h µα   is a vielbein on Minkovsky space 4M  and ( )qg n  is a vielbein on 3-dimensional 

sphere S3. Then there are two nontrivial motion equations: 

( )2

3

1 1[ ]( ) [ ] 6 ( ) [ ]( )
2 4

R h R h r Y h
k

−αβ − + − Λ δ αβ = αβ    (4.7)  

( )2 2 2 22

3

12 ( ) [ ] 6 ( ) 4 ( ) 6 ( )
2

kr pq R h r pq r pq r pq
k

− − − −′
δ − + − Λ δ = κ δ − δ                                        (4.6) 

Where ( )( )
3

14
2

Y X k R g Rαβ αβ αβ αβ⎛ ⎞≡ + − + Λ⎜ ⎟
⎝ ⎠

                                                                    (4.8) 

For Minkovsky space [ ]( ) 0R h αβ = , so that we have from (4.6)-(4.7) conditions for constants  

1 2,k k′ ′ and compactification radius 2r−  

2 3
1
3

k k′ = −  1 3
1
6

k k′ = −  2 1
6

r− = Λ                                                                          (4.9) 

If constants are like (4.9), we have for metric tensor a searching solution of kind M4
xS3. 

That is to say, with such constants, 4-dimantional dynamics allows solutions like plane 
Minkovsky space, and the other dimensions are compactified into 3-dimensional sphere. 

5.Conclusions 

In vielbane gravity Schwarzschild solution appears  not only in case, when additional 
constants of the Einstein-Möller action are small, as was shown by Möller [1], but in case of 
arbitrary constants too, when some relations for these constants are valid. . If this relations are 
broken, there is no spherical symmetric Schwarzschild-like solutions in Möller gravity theory. 

4-dimantional dynamics allows solutions like plane Minkovsky space with a large spectre 
of theory parameters, when additional dimensions are spontaneously compactifed in to 3-
dimentional sphere.  

The action of the theory is not invariant with regard to rotations of frame vectors. It can 
result in the theory with Lorentz symmetry violation, when some relations for these constants 
are valid, but in this paper we are not describe such cases. 
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