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1. Introduction

Hadron properties and their mass spectrum have been derived in ttstr@panodel (Hage-
dorn model) [1, 2] and the bag model [3]. This spectrum is rather poarbyvk experimentally,
but it has suggested an exponential form which the theoretical spectralbioth models repro-
duce, exactly in the bag model, in leading order in the bootstrap model. Gichras exponential
spectrum, one should easily derive the associated thermodynamics.

Such exponential systems are thermostats and are well known in standarmdynamics.
Such are, for instance, any two phase systems in coexistence at fesxlipg, like a mixture of
liquid water and ice, as seen in Fig. 1, or liquid water and its saturated v&pameously, the
partition function calculated with this spectrum seems to lead to the expectaticudtied system
can exist over a range of temperatures, with an upper bound called the liteitipeeraturdy:

E TTH
Z(T) = /dEp(E) exp<—_|_> =TT

(1.1)

whenp(E) = exp <+E> .
TH

In contrast to the above conclusion, we have shown [4, 5] that thectaesult implies that
such exponential systems are characterized by one and only one tamp&a and confer the

same temperaturgy to any other “system” coupled to it. Thus the Hagedorn thermostat cannot
exist at any temperature different thgnany more than a water-ice system at atmospheric pressure

can exist at any temperature other tha@0

It is immediately shown [4, 5] that such a system, when allowed to equilibrate iretetope
and in particle number with a gas of particles of mas$eads to a particle concentration which is
volume independent:

(1.2)

Figure 1: Liquid water with ice in equilibrium at atmospheric pressig an example of a thermostat with
an exponential spectrum and will always have the same textyyerno matter how much energy is put into
it.
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whereg(m) is the degeneracy of the particle. In other words, the gas is a saturggedarad the
thermostat is not only an infinite heat/energy reservoir, but also an infiaitle reservoir.

2. Thebag model

The bag model, in its simple form (no conserved charges), can be easiblizedl. There
are two vacua: 1) a lower energy vacuum, the hadronic vacuum; 2) arhéglergy vacuum, or
partonic vacuum. A bubble, or bag, of partonic vacuum of volume V cawpeaed at a cost:

E=pV =BV, (2.1)
whereB is called the bag constant and is the constant pressure exerted by theibadcuum on
the bag.

The bag pressur®, can be counteracted by the pressure of the partonic black body:
gn2
=B 2.2
P="30" (2.2)
Zji
This can occur only at one temperatdie= (B%) .
The enthalpy density of the bag is:
g,
H=2_T1% B, 2.
30 M + (2.3)
and the entropy is:
H m m
S= ﬁ =T, or p(E) = expS= exp<_|_H> : (2.4)

This shows that the bag is characterized by an exponential spectrum.

The analogy with a bubble of vapor forming in a liquid at a hydrostatic pref@u= B is
complete and compelling. There is a temperatigg,at which the saturated vapor pressure is
p(Tg) = B. At any temperatur@ < Tg, no bubble can exist in the liquid. At = Tg, a bubble can
finally form. This bubble can be of an arbitrary size, as the liquid evapoisttnermally into the
bubble. In fact, the system exists between two extreme regimes: 1) all liquad saturated vapor.
Accordingly, the “energy density” interpolates linearly between the twoesponding limits.

In conclusion, we have described the bubble formation (boiling) in a liquitked pressure.
We can translate this picture into the case of a bag according to a simple digtionar

liquid — hadronic vacuum
interior of vapor bubble— partonic vacuum
saturated vapor — partonic blackbody radiation

In order to complete the picture, we can add that a liquid cannot - evereratera bubble at
T < Tg. However, a black body phonon spectrum can exist at any tempefatarg. Similarly,
the hadronic vacuum cannot support a bag at temperdtuteTy, but can have a black-body
spectrum of its own, like a saturated gas of pions and any other particle witin-@xponential
spectrum. See Fig. 2.
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Figure 2: Schematics of a Hagedorn system at different temperatitesce how belowTy there are no
bags, whereas any system with bag(s) presentlis=afly.
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Figure 3: As a function of energy, the temperature of the Hagedorreaysiill first increase and then reach
the limiting temperature of.

What happens in the bag model when we heat the hadronic vacuumaits/s@mperatures?
At T < Ty, the hadronic vacuum is permeated with a black-body radiation made upexistihg
particles/antiparticles, such as pions, with a non-exponential intrinsitrapecThe energy density
is: ,
2
E(T):\%ZN(m) <m+§T> =3 <”2‘;> <m+gT> exp(_Q). (2.5)
As T increases, the energy density increases until the temperatufig hiéd this time the bag(s)
appears, intermingled with the saturated vapor. The energy density antigisrure can go from
that of the saturated vapor to that of the bag. The latter correspondstte aticessible space taken
up by the partonic vacuum and the partonic blackbody. No temperatureriiftinT, is possible
unless an external pressure is added to the bag pressure, eitherichihaor through a formal
constraint. See Figs. 2 and 3.

3. Resonance gas, or a gas of bags

No bag can form at < Ty. At T = Ty, however, bags can form. Two related questions arise:
1) What is the mass distribution of the bags?
2) Do these bags contribute in any way to the pressure (equation of dtéte)system?
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3.1 Massdistribution of bags

The exponential spectrum tells us that bags are thermodynamically indiftereoalescence
or fragmentation [4, 5]. However, if one incorporates the translatioegtees of freedom of the
bags, one obtains the concentration of bags of mess:

wheng(m) = exp(_lr_n> .
H

The most probable bag is the bag with the largest mass possible, which-igo. Given the
finite size of the bag proportional to m, the most probable configuration isgéesimfinite bag
representing the liquid. Notice that bags, whatever their mass, will camyenage kinetic energy
of %TH. For more details, see Ref. [4] and Ref. [5].

While, in principle, the “little” bags of the distribution peakingrat— c can be considered
part of the saturated vapor, the above description, like in any liquidrvsysiem, implies the
essential separation of vapor and liquid. The vapor is always=afly and the pressure isde-
pendent of volume. These considerations drastically limit the role of a “resonance” or “bag’ig
the description of the thermodynamic equilibrium of the system [4, 5].

4. The shape of the bag and its surface energy

In the standard bag model, only volume terms are present, and there isfacesenergy.
Therefore, a new question arises: “What is the shape of a bag?”tter,lfélow many shapes can
a bag of finite volume assume?”

In lattice models, it is possible to enumerate such number of ways. The mabsthpeovay
is typically highly dendritic spaghetti-like. The example of clusters in a lattice gdarisinating.
The presence of a surface energyTok T. forces the most probable shape to be compact. Above
Te, the surface energy disappears and the shape is dendritic. Fig. 4 Bbamthe probability of
finding a cluster with a given surface changes when the temperature isdalt€his is vividly
manifested in the dimensionality change as one crogsess shown in Fig. 5. In the absence of
surface energy, the fluctuations of the bag shape are already thasupércritical system at the
unique stable temperatufg. In other words, there is no criticality.

In P(A S)

Sphere-like

Figure4: The shape of the clusters changes as a function of temperatntrolled by the Boltzmann factor
for the surface energy.
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Figure 5: Surface dimensionalityS0 A9) of 3-dimensional lattice clusters with surface as a fuorctf
temperature.

5. Effectsof surface energy

What are the consequences of a possible surface energy? Firgt ibfwaould make the
situation of a gas of bags even more precarious, since there would beslagreater tendency
to maximize the drop size and to minimize the surface. Even more interesting isdbeadfthe
surface on the bag temperature. The surface translates into an additiesslre on the bag. The
enthalpy of the bag becomes:

EV =H = [f(T)+B]V + V3. (5.1)
The pressure is:
p= %f(T) - <B+ §CSV1/3> = 0 at equilibrium (5.2)
for which:
T=f1 {3 <B+§CSV_1/3>] (5.3)

In Fig. 6 we show the dependence of the bag size on the temperatuigy, emer heat capacity.
Notice that the temperature of a bag increases and tends to infinity with diegyéag size.
The introduction of a temperature dependent surface energy is algoiegdgemented. If:

T
Cs=0Cg <1— ) : (5.4)
Tc
=~ 4 T
w Q)Q
0
% vV "V
(a) Temperature (b) Energy (c) Heat Capacity

Figure 6: Effects of bags having a surface energy on various thernadigproperties.
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Figure 7. Effects of the surface energy varying with temperature.idéohow the temperature stays finite
with this change when previously it diverges.
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(a) Stability of a gas of bags (b) The decay of a bag with surface

Figure 8: Schematic picture of the effects of a bag having surfaceggner

we have for the stability condition:
2 T
0T4:3{B+3c2 <1—T>v2/3] (5.5)
C

Compared to the previous situation, the bag temperature gokgather than infinity as the bag
becomes small, as seen in Fig. 7. It also preserves the trend that thedgrgieds go to a temper-
ature ofTy.

This temperature dependence of the bag leads to two interesting conclusions

1) A gas of bags of different sizes, and trafdifferent temperatures, is out of equilibrium.
The system will tend to make one single bag of maximum size and minimum surface.

2) If a bag decays, its temperature, as manifested by the decay prodataspions, will
progressively increase as the bag evaporates.

These conclusions are shown in Fig. 8.
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