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The next-to-leading order (NLO) evolution of the parton distribution functions (PDFs) in QCD is
a common tool in the lepton-hadron and hadron-hadron collider data analysis. The standard NLO
DGLAP evolution is formulated for inclusive (integrated) PDFs and done using inclusive NLO
kernels. We report here on the ongoing project, called KRKMC, in which NLO DGLAP evolution
is performed for the exclusive multiparton (fully unintegrated) distributions (ePDFs) with the help
of the exclusive kernels. These kernels are calculated within the two-parton phase space for the
non-singlet evolution, using Curci-Furmanski-Petronzio factorization scheme. The multiparton
distribution, with multiple use of the exclusive NLO kernels, is implemented in the Monte Carlo
program simulating multi-gluon emission from single quark emitter. High statistics tests (~ 10'°
events) show that the new scheme works perfectly well in practice and, at the inclusive (integrated)
level, is equivalent with the traditional inclusive NLO DGLAP evolution. Once completed, this
new technique is aimed as a building block for the new more precise NLO parton shower Monte
Carlo, for W/Z production at LHC and for ep scattering, as well as a starting point for other
perturbative QCD based Monte Carlo projects.
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Exclusive Monte Carlo modelling of NLO DGLAP evolution S. Jadach

We report on the ongoing effort on the exclusive Monte Carlo (MC) modeling of DGLAP[1]
evolution at the NLO level using work of Curci Furmanski and Petronzio (CFP) [2] as a guide and
reference.

The so-called factorization theorems [3, 4, 5] in Quantum Chromodynamics (QCD) are stat-
ing that in the high energy scattering process of hadrons, with an experimentally identifiable single
large scale (effective mass, transverse momentum etc.) one may reorganize the infinite order per-
turbative expansion in terms of Feynman diagrams, such that all collinear (mass) singularities are
encapsulated into certain well defined objects, called parton distribution functions (PDFs) or parton
fragmentation functions (PFFs or jets), while the remaining part, free of such singularities, forms
the so-called hard process part (coeff. function). The soft singularities due to zero mass gluon
emissions are shown not to disturb or invalidate this picture [4], if they are averaged/integrated
over the phase space and properly combined with the virtual contributions. In the physical gauge
the PDF/PFF part consists of a well defined Feynman diagrams with the ladder topology. In the
early stage of formulating practical QCD perturbative methodology it was found that the most eco-
nomical way of dealing with the PDF/PFF parts of the process was to define them as inclusive as
possible, integrating over transverse momenta and summing up over all partons emitted from the
ladder, keeping control only on the total energy (light-cone variable) of the parton entering the hard
process, and its type. Such inclusive (collinear) PDF is widely used until today in most of practical
QCD calculations, especially for the initial hadrons.

The only exception is the so-called parton shower Monte Carlo (PSMC), where one gains
access to all momenta and other quantum numbers in PDF/PFF (ladder) part of the hadronic scat-
tering, for every incoming hadron or outgoing jet. Originally the main role of PSMCs was to
describe hadronization of the partons, but they have gradually absorbed the leading order perturba-
tive QCD (pQCD) description [6, 7] of the ladders (PDFs, PFFs). With the growing sophistication
of the high energy (HE) experimental detectors PSMC became indispensable for understanding
data in any modern experiment. However, although pQCD calculations using inclusive PDFs have
evolved enormously in their sophistication (evolution of PDFs at NLL, NNLL level, corrections
to hard process at NLO, NNLO, new ingenious methods of calculating tree-level multiple parton
distributions and more) the PSMCs have stayed, from the pQCD point of view, where they were 25
years ago, that is at the (improved) LO/LL level, until today! This lack of the progress is not fully
understood, but most likely the main reason was that computers fast enough were not available
and due to the difficulties in reformulating QCD factorization theorems into a form suitable for
stochastic simulation (MC) methods.

We are reporting on the first serious attempt to upgrade parton shower MC for a single incom-
ing quark (non-singlet PDF) to the level of the complete NLO'. This will be done, as in early days
of pQCD, in the physical gauge, including first order real and virtual corrections to the basic ladder
describing LO level showering of one incoming quark. Our Monte Carlo implementation of NLO
DGLAP evolution is: (1) based firmly on Feynman diagrams and standard LIPS, (2) based rigor-
ously on the collinear factorization (eg. EGMPR [3]), (3) implementing exactly NLO MS DGLAP
evolution at the inclusive level, (5) defining fully unintegrated exclusive ePDFs (the integrand of
inclusive PDFs), (6) performing NLO evolution by the MC itself (no use of backward evolution[6]).

I'See also refs. [8, 9, 10] for similar effort in this direction.
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Figure 1: Raw factorization theorem in the physical gauge.

Factorization scheme of EGMPR [3], see Fig. 1, was customized to MS by CFP [2]:
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where the ladder part I" corresponds to MC parton shower and C is the hard process part 2. NLO kernels were
extracted in ref. [2] from the coefficient of a single pole é inI'. Projection operator of CFP, IP = Py, Py, PP,
consists of the kinematic (on-shell) projection operator Fy;,, spin projection operator Py, and PP extracting
pole part gi,{,k > 0.

In our MC solutions we use the standard interpretation [11] of the collinear €-poles:

1 we dikl” (kT ©
L / = (=) . 2
€ o k UF
However, the ladder part in CFP/EGMPR scheme features enormous cancellations, as can be seen already at
the LO level3: | 5
r:7:1+<17e—%)+(17e-%) . 3)

1—(1_8—%)

while from RGE and explicit LO calculation we obtain readily I = etr =1 + % + % 8% + ... In the MC we
need this exponent manifestly, if possible directly from the Feynman diagrams!
The above exponential nature of the QCD evolution of PDFs is manifest in the following master formula

F=Co-- —lKo = Co- Ryu[Ko] - expro ((IF’ {SKO . ES[KO]})“ : .
1

1 —Kp

— — — — —
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which is serving as a generating functional of the exclusive parton distributions implemented in the MC.

Here, expr( i the time ordered exponential in the time evolution variable ¢ = In u, where u is factorization
—

scale variable. Operator IB is defined recursively®:

ulKo] = Ko — P, {*Ko},
ulKo- Ko) =Ko - Ko— P {?Ko}- Pt {* Ko} — P}, {" Ko- By, [Ko]} — B i [Ko]- P} {Ko}, o)
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2Multiplication symbol - means full phase space integration d"k while convolution ® only the integration over the
1-dim. lightcone variable.

30Omitting for simplicity 1 /€" poles due to running of the coupling constant from the consideration.

4Similarly as fB-functions in Yennie-Frautschi-Suura[12] subtraction scheme. See also [13].
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More terms in the recursion can be obtai(IE:d by expanding eq. (4) in powers of Ky. The key point is the
definition of modified projection operator IP’: (a) it does spin projection as IP of CFP, (b) it sets its incoming
momentum on-shell in the part of the diagram towards the hard process, (c) it acts on the integrand of the
Lorentz invariant phase space (LIPS), before integration, (d) it sets upper limit ¢ on the phase space for
all its own real (cut) partons, eg. 1 > s(ki,..,k,) = max(k!), () our preferred choice is rapidity ordering
choice; s(ky,...k,) = a(ky,...k,) = max(k] /&), 0 = k" /E, (f) <113;l (A) acts on A which is at most single-
log (collinear) divergent and extracts this singularity from the LIPS integrand®, (g) <]13;J(K0) is legal, as Kj
is single-log divergent, (h) nesting like <113’[K0 (1- P (Kp))] is allowed, as long as its argument is no more
than single-log divergent, (e) IP’ does not include PP operation. Finally, the time ordered exponential reads:

exXPro (IP;.L{A})” =1+ IP’ﬂ {A}+ Pu {"A} ~IP§,2 {f1A} + IPL {BA}- IP"Y3 {"A} ']P;z {f1A} +... (6)

where notation {*A} means that s = a(aj, ...,a,) = max(ay,...,a,). For instance for n = 3 the entire integrand
multiplied by 6;~,~s,>s,. Variable u is constant, while s; depend on the 4-momenta integration variables.

Master formula of eq. (4) is very important for us, as it serves as a generating functional of the exclusive
distributions beyond LO implemented in the MC. It should be also stressed that in CFP work the time
ordered exponential is present, however, only for the inclusive PDFs. It is obtained there with help of
renormalization group equations, not directly from Feynman diagrams. The question of deriving eq. (4)
directly from diagrams at any perturbative order remains an open important problem.

From now on, in the factorization formula (4), we focus on the exclusive PDF (ePDF) Z(u,kj, ..., k),
which is the integrand of the inclusive PDF:

D(k) = expro (P {*Ko- Ry [Kol } ) (1) = expro(K), ™

The x-dependent PDFs (inclusive) are obtained by means of inserting & (x — x(ki, ..., k,)) in the integrand ©,
D(u) — D(u,x) = D()y.

The standard inclusive PDF is obtained form ePDF by integration D(u,x) = [ dLips Z(U,ki, ..., kn,x).
It obeys by construction the ordinary evolution equation

8“D(,u,x) :?®D(H7x) (8)
with the inclusive DGLAP kernel

9 _ . Lk § d S fsp =
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The LO and NLO truncations of the evolution kernel K, are: Kj° = (IFL {*Ky}, taken at O(a') and

Kﬁ'w = (IF;L {S(Ko +Ko-(1— (IF’) -Ko) } truncated at &'(a?). The 2PI kernel Ky of CFP scheme (non-
singlet bremsstrahlung) at LO+NLO is:
<31¢, (10)

woa(§ P @ ff

where dashed lines are gluons, blobs marked “Virt” may include several (one loop) subgraphs. First two
terms in the x-dependent T.O. exponential with LO kernel read

expro (Pp{K"’}) ~ 8o + P{K;}e = 81 +2R (@ ? +I)+ <l+1?+l)

2Cray [ 1427
= le"'lng F S<2(l—x)) = x:1+1n;Q()qu(x)v
+

q0
SFor instance by rescaling all k! — Ak and taking coefficient in front of 1/ term.
6Such an insertion we shall often mark as (...),. In the MC it means histogramming of x.
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where gq is IR cut-off and P, (x) = 2E% (zl(frfi )) .
+

. L. . _ 1+(1—0y )2 . ..
The LO exclusive distribution pgy, = % w éem s resides inside
1

dk _

e 2k01 00>a,>q PB1-(k1) = /061d061d231d¢1 00>a,>q0 PB1-(K1), (12)
where a; =k /o and a; = |a;| ~ polar angle of the gluon with transverse momentum k;. The trivial phase
space integration gives Sudakov double log or LO kernel:

T 2Cra,, Q [, 1 3 = 0
1 = T *In= <1 3 4> :SlSR’ <--1--;----)X_IH%TQQ(X)GIX<8' (13)

M
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The x-dependent version of the same D(Q,x) = exprq <1P’ {KLO}) reads

b 0 ( 1-6 2 g
s -l B (L[ % 0 [T Ao o9
n=1 =1 v4j-1 %

From now on we enter NLO world. The NLO kernelKN Lo _p’ {s (Ko+Ko-(1— P’ )-Ko) } with K
of eq. (10) (nonsinglet bremsstrahlung) is inserted into T.O. exponent of the NLO ePFD:

D3 (0) = exp(=Sl}) (1+ P{K"} +Pp{ K"} - P, {“K'}+

ISR

+Pp{ K"} Pl {2K"} Pl ("K'} + ... )

)t i E

Where the zero-real-emission part of the kernel —

(16)

o (56

order) factorizes and exponentiates.

The remaining part of the NLO kernel K" = —

used directly in the MC, if both K'" and K*" were positive. Since K?" is non-positive we have to recom-
bine K>" with 2 real emission distribution, that is to put it back where it came from (reversing what the
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Figure 2: Two-real-gluon NLO correlation function.

factorization did):

a7

In eq. (17) the first row is positive and large (LO + virtual NLO), hence it will go to basic MC, while
the second row being small and nonpositive can be absorbed into MC correcting weight. However, it is

Bl P

O > ay > a; > qo, while the target distribution is nonzero in the bigger rectangle Q > max(ay,a;) > qo.
Going back to original Feynman diagrams we see that the above problem turns out to be fictitious, if we
properly keep track of the Bose-Einstein (BE) symmetrization:

(18)

- /d3k2 d*k;
VAT T

9Q>max(a2,a1)>0 9a2>a| (BlB(kZ,kl) JFBIB(kla]Q));

where for purely technical reasons we include an internal ordering 6,,-,, for the already symmetric inte-
grand. See ref. [14] for definition of the NLO 2-gluon function 15 (k1,k2). We call sometimes the resulting
MC weight the NLO short range correlation function, because it contributes significantly only if both glu-
ons are non-soft and have transverse momenta (or rapidities) almost equal, as seen in the plot of Fig. 2. BE
symmetrization requires clever reorganization of combinatorics, if want to gain on the computation speed
by means of excluding terms equal zero from the BE symmetrization sum. For instance, BE symmetrization
over 3! permutations of 3 arguments of a single NLO correlation function and one LO spectator distribution
reduces to only 2 terms’:

(19)

"Drawing of half of the ladder
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Permutation 7 performs the right ordering a(,), > a(z,), > d(x,), at a given phase space point k = (ki k2, k3).
This is denoted in the above by {7*} = {(123),(213)}, where (123) is identity and (213) interchanges (7);
and (7 )». Generalization to double insertion of NLO correlation function in the ladder in a sketchy graphical
form is:

Y Y Y O \ . (20)
Jasdp{mgi{my} i fi b e e T

J
The corresponding algebraic formula of the above NLO ePDF can be found in ref. [14], together with the
numerical result of the precision MC test.

Figure 3: Feynman diagrams contributing to NLO non-singlet evolution.

So far we have considered the ~ C% diagrams, in Fig. 3. The remaining ~ CrC,4 diagrams add new
problem: strong cancellations between real and virtual contributions in the NLO correction® due to final
state radiation (FSR) Sudakov double log, This enforces exponentiation of the FSR already in the LO basic
MC, if we aim at positive weight MC events. In the basic MC each gluon in the LO ladder is replaced by

'l"Cl;[Q.I'~

resolved multigluon

_- obtained by iterating/exponentiating “soft counterterm”

K7. BE symmetrization is also done for FSR gluons, such that the complete NLO correcting weight includes
the following sum:

21

where K/ = is the ~ CrC4 component in the above NLO MC weight.

Th leading FSR Sudakov double log part is subtracted in K/. The above sum in the MC weight was already
tested for single NLO insertion, giving rise to a well behaved weight distribution. More testing is under way.

Summarizing, we report here on a small but essential part of the larger project, with the aim of im-
plementing NLO DGLAP evolution of the parton distributions in fully unintegrated inclusive form in the

8Soft limit of this object was analyzed in ref. [15], exposing colour coherence effects.
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Monte Carlo with positive weights (weights equal one). The main result of the ongoing study, so far limited
to nonsinglet ePDF, is that this is feasible. Once completed, this project will lead to new type of the parton
shower MC for the initial state in LHC and other colliders with hadron beams.
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