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1. Introduction

Deep-inelastic scattering (DIS) of charged or neutral leptons off proton and deuteron targets, in
the region of large enough values of the gauge boson virtuality Q2 = −q2, allows to measure the
leading twist parton densities of the nucleon, the QCD-scale ΛQCD, and the strong coupling con-
stantas(Q2) = αs(Q2)/(4π), to high precision. For unpolarized DIS via single photon exchange,
the double–differential cross section can be expressed in terms of two inclusive structure functions
F2,L(x,Q2). These decompose for twistτ = 2 into a Mellin convolution ofnon-perturbative mass-
less parton densitiesf j(x,µ2) and theperturbative Wilson coefficientsC j,(2,L)(x,Q

2/µ2,m2
k/µ2).

The latter describe the hard scattering of the photon with a massless parton.They are given by the
sum of the purely light – denoted byCj,(2,L) – and heavy flavor contributions,H j,(2,L). Herek= c, b
and j = q, g, depending on the type of process one considers.x denotes the Bjorken scaling vari-
able. Especially in the region of smaller values of Bjorken–x, the structure functions contain large
cc–contributions of up to 20-40 %, denoted byFcc

2,L(x,Q
2). The perturbative heavy flavor Wilson

coefficients corresponding to these structure functions are known atNLO semi–analytically inx–
space [1]. Due to the size of the heavy flavor corrections, it is necessary to extend the description
of these contributions toO(a3

s), and thus to the same level which has been reached for the massless
Wilson coefficients [2].

A calculation of these quantities in the whole kinematic range atNNLO seems to be out of
reach at present. However, in the limit of large virtualities Q2, Q2 >

∼ 10m2
c in the case ofFcc̄

2 (x,Q2),
one observes thatFcc̄

2,L(x,Q
2) are very well described by their asymptotic expressions [3]neglecting

power corrections inm2/Q2, cf. also [4]. In this kinematic range, one can calculate theheavy flavor
Wilson coefficients analytically. This has been done forFcc̄

2 (x,Q2) to 2–loop order in [3, 5] and for
Fcc̄

L (x,Q2) to 3–loop order in [6]. Note that in the latter case, the asymptotic result becomes valid
only at much higher values ofQ2. The asymptotic expressions are obtained by a factorization of the
heavy quark Wilson coefficients into a Mellin convolution ofmassive OMEsA jk and the massless
Wilson coefficientsCj,i , if one heavy quark flavor of massmandnf light flavors are considered. In
the present paper, we report on the calculation of the massive OMEsA jk to 3–loop order for fixed
even moments of the Mellin variableN, cf. [7] for details. We further calculate the OMEs which
are required to define heavy quark parton densities in the variable flavor number scheme [8]. We
also obtain moments of the terms∝ TF of the 3–loop unpolarized anomalous dimensionsγi j . Our
results agree with those obtained in [9]. Since the present calculation is completely independent by
method, formalism, and codes, it provides a strong check on the previous results.

2. Heavy Flavor Operator Matrix Elements

The heavy flavor Wilson coefficients for a single massive quark may be expressed as

H
S,PS,NS

j,(2,L)

(

x,
Q2

µ2 ,
m2

µ2

)

= HS,PS

j,(2,L)

(

x,
Q2

µ2 ,
m2

µ2

)

+LS,PS,NS

j,(2,L)

(

x,
Q2

µ2 ,
m2

µ2

)

, (2.1)

where the photon couples to a light(L) or heavy(H) quark line, respectively. FurtherS stands
for the flavor–singlet contributions, which are separated into a pure-singlet(PS) and non–singlet
(NS) part viaS = PS+NS. The factorization formula for the inclusive Wilson coefficients reads in
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Mellin space, [3, 8],

C
S,PS,NS,as
j,(2,L)

(

N,nf ,
Q2

µ2 ,
m2

µ2

)

= ∑
i

AS,PS,NS

i j

(

N,nf ,
m2

µ2

)

CS,PS,NS

i,(2,L)

(

N,nf +1,
Q2

µ2

)

. (2.2)

Here µ refers to the factorization scale between the heavy and light contributions inC j,(2,L) and
’as’ denotes the limitQ2 ≫ m2. TheCj,(2,L) are precisely the light Wilson coefficients and describe
all the process dependence. The arguments(nf ), (nf + 1), indicate at how many light flavors the
respective quantities have to be taken. This factorizationis only valid if the heavy quark coefficient
functions are defined in such a way that all radiative corrections containing heavy quark loops are
included. Otherwise (2.2) would not show the correct asymptotic Q2–behavior [8]. The mass de-
pendence is given by the process independent massive OMEsAi j , which are the flavor–decomposed
twist–2 operator matrix elements

AS,NS

ki

(m2

µ2 ,N
)

= 〈i|OS,NS

k |i〉H = δki +
∞

∑
l=1

al
sA

S,NS,(l)
ki

(m2

µ2 ,N
)

. (2.3)

Here,i denotes the external on–shell particle (i = q,g) andOk stands for the quarkonic (k = q) or
gluonic (k = g) operator emerging in the light–cone expansion. The subscript H indicates that we
require the presence of heavy quarks of one type with massm. The logarithmic terms inm2/µ2 are
completely determined by renormalization and contain contributions of the anomalous dimensions
of the twist–2 operators. Thus atNNLO the fermionic parts of the 3-loop anomalous dimensions
calculated in Refs. [9] appear. All pole terms of the unrenormalized results provide a check on our
calculation and the single pole terms allow for a first independent calculation of the terms∝ TF of
the 3-loop anomalous dimensions.

In case of the gluon operator, the contributing terms are denoted byAgq,Q andAgg,Q. For the
quark operator, one distinguishes whether the operator couples to a heavy or light quark. In the
NS–case, the operator, by definition, couples to the light quark. Thus there is only one term,ANS

qq,Q.
In theS andPS–case, two OMEs can be distinguished,{APS

qq,Q, AS
qg,Q} and{APS

Qq, AS
Qg}, where, in

the former case, the operator couples to a light quark and in the latter case to a heavy quark.
Eq. (2.2) allows to calculate the heavy flavor Wilson coefficients in the limitQ2 ≫ m2 up to

O(a3
s) by combining the results obtained in Ref. [2] for the light flavor Wilson coefficients with the

3–loop massive OMEs which are computed in this work [7].
A related application of the heavy OMEs is given when using a variable flavor number scheme

to describe parton densities including massive quarks. TheOMEs are then the transition functions
going from nf to nf + 1 flavors. One thus may define parton densities for massive quarks, see
e.g. Ref. [8]. This is of particular interest for heavy quarkinduced processes at the LHC, such as
cs→W+ at large enough scalesQ2.

3. Renormalization

We work in Feynman gauge and use dimensional regularizationin D = 4+ε dimensions, applying
the MS–scheme, if not stated otherwise. The renormalization proceeds in four steps, which we
will briefly sketch here and refer to [7] for more details. Mass renormalization is performed in the
on–shell scheme [10], whereas for charge renormalization we use theMS–scheme. We work in
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an intermediateMOM–scheme for charge renormalization by requiring that the heavy quark loop
contributions to the gluon propagator vanish for on–shell external momentum. This is necessary for
the renormalization of the massive OMEs to cancel infrared singularities which would otherwise
remain.Zg in thisMOM–scheme can be calculated using the background field method [11]. Finally,
we transform our result back to theMS–scheme for coupling constant renormalization via, [7],

aMOM
s = aMS

s −β0,Q ln
(m2

µ2

)

aMS
s

2
+

[

β 2
0,Q ln2

(m2

µ2

)

−β1,Q ln
(m2

µ2

)

−β (1)
1,Q

]

aMS
s

3
, (3.1)

with

β0,Q = −
4
3

TF , β1,Q = −4

(

5
3

CA +CF

)

TF , β (1)
1,Q = −

32
9

TFCA +15TFCF . (3.2)

The remaining singularities are of the ultraviolet and collinear type. The former are renormalized
via the operatorZ–factors, whereas the latter are removed via mass factorization through the transi-
tion functionsΓ. After coupling– and mass renormalization, the renormalized heavy flavor OMEs
are then obtained by

A = Z−1ÂΓ−1 , (3.3)

where quantities with a hat are unrenormalized. Note that inthe singlet case operator mixing
occurs and hence Eq. (3.3) should be read as a matrix equation, contrary to theNS–case. TheZ–
andΓ–factors can be expressed in terms of the anomalous dimensions of the twist–2 operators to
all orders in the strong coupling constant, cf. [7, 12] up toO(a3

s). From Eq. (3.3) one can infer
that for operator renormalization and mass factorization at O(a3

s), the anomalous dimensions up to
NNLO [9] together with the 1–loop massive OMEs up toO(ε2) and the 2–loop massive OMEs up
to O(ε) are needed. The 2–loop OMEs up toO(ε0) were calculated in Refs. [3, 5, 8, 13]. Higher
orders inε enter since they multiplyZ− andΓ–factors containing poles inε . This has been worked
out in detail in Ref. [12], where we presented theO(ε) termsa(2)

Qg, a(2),NS

qq,Q anda(2)PS

Qq . The terms

a(2)
gg,Q anda(2)

gq,Q were given in Refs. [13]. Thus all terms needed for the renormalization at 3–loops
in the unpolarized case are known.

Finally we would like to point out the difference between theMOM– andMS–scheme for
coupling constant renormalization atNLO [13]. Eq. (2.2) holds only for completely inclusive
quantities, including radiative corrections containing heavy quark loops [8]. Additionally, (2.2)
has to be applied in such a way that renormalization of the coupling constant is carried out in the
same scheme for all quantities contributing, i.e., theMS–scheme. If one evaluates the heavy-quark
Wilson coefficients, diagrams of the type shown in Fig. 1 may appear as well. It contains a virtual
heavy quark loop correction to the gluon propagator in the initial state and contributes to the terms
Lg,i and Hg,i , respectively, depending on whether a light or heavy quark pair is produced in the
final state. Note that in the former case, this diagram contributes toF(2,L)(x,Q

2) in the inclusive
case, but is absent in the semi–inclusiveQQ–production cross section. In Refs. [1], the coupling
constant was renormalized in theMOM–scheme inO(a2

s) by absorbing the contributions of the
above diagram into the coupling constant. This can be made explicit by considering the complete
gluonic Wilson coefficient up toO(a2

s), including one heavy quark, see Eq. (2.2),

Cg,2(nf )+Lg,2(nf +1)+Hg,2(nf +1) = aMS
s

[

A(1),MS

Qg +C(1)
g,2(nf +1)

]

4
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Q(Q)

Q(q)

Q(q)

Figure 1: O(a2
s) virtual heavy quark corrections to H

(2)
g,(2,L).

+aMS
s

2[

A(2),MS

Qg +A(1),MS

Qg C(1),NS

q,2 (nf +1)+A(1),MS

gg,Q C(1)
g,2(nf +1)+C(2)

g,2(nf +1)
]

. (3.4)

The above equation is given in theMS–scheme. Here, the diagram shown in Fig. 1 contributes,
corresponding exactly to the color factorT2

F . Transformation to theMOM–scheme foras, Eq. (3.1),
yields

Cg,2(nf )+Lg,2(nf +1)+Hg,2(nf +1) = aMOM
s

[

A(1),MOM

Qg +C(1)
g,2(nf +1)

]

+aMOM
s

2
[

A(2),MOM

Qg +A(1),MOM

Qg C(1),NS

q,2 (nf +1)+C(2)
g,2(nf +1)

]

. (3.5)

In the above equation, all contributions due to diagram 1 have canceled, i.e. the color factorT2
F

does not occur at the 2–loop level in theMOM–scheme. Splitting up Eq. (3.5) intoHg,i andLg,i ,
one observes thatLg,i vanishes atO(a2

s). The termHg,i is the one calculated in Ref. [3], which is
the asymptotic expression of the gluonic heavy flavor Wilsoncoefficient as calculated exactly in
Refs. [1]. It is not clear whether the same can be achieved at the 3–loop level as well, i.e., trans-
forming the general inclusive factorization formula (2.2)in such a way that only the contributions
due to heavy flavors in the final state remain. Therefore one should use the asymptotic expressions
at 3 loops only for completely inclusive analyzes. This approach has also been adopted in Ref. [8]
for the renormalization of the massive OMEs, which was performed in theMS–scheme and not in
theMOM–scheme, as previously in Ref. [3]. In theNS-case a similar argument holds, which can
be found in Ref. [3].

4. Calculation and Results

The massive OMEs atO(a3
s) are given by 3–loop self–energy type diagrams, which contain a

local operator insertion. The external massless particlesare on–shell. The heavy quark mass sets
the scale and the spin of the local operator is given by the Mellin–variableN. The steps for the
calculation are the following: We useQGRAF [14] for the generation of diagrams. Approximately
2700 diagrams contribute to all the OMEs. For the calculation of the color factors we refer to [15].
The diagrams are then genuinely given as tensor integrals. Applying a suitable projector provides
the results for the specific Mellin moment under consideration. The diagrams are further translated
into a form, which is suitable for the programMATAD [16], through which the expansion inε is
performed and the corresponding massive three–loop tadpole–type diagrams are calculated. We
have implemented all these steps into aFORM–program [17] and checked our procedures against
various complete two–loop results and certain scalar 3–loop integrals and found full agreement.
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Applying Eq. (3.3), one can predict the pole structure of theunrenormalized results and thus
the logarithmic terms of the renormalized OMEs. These contributions can be expressed in terms
of the anomalous dimensions up to 3 loops, the expansion coefficients of the QCDβ–function up
to 2 loops and the 1– and 2–loop contributions to the massive OMEs. Thus the logarithmic terms
are known for general values ofN. This is not the case for the constant term, which contains the
genuine 3–loop contributionsa(3)

i j . These are known for the fixed values ofN as calculated in this
work [7].

For the OMEsA(3)
Qg,A

(3)
qg,Q andA(3)

gg,Q the momentsN = 2 to 10, forA(3),PS
Qq to N = 12, and for

A(3),NS
qq,Q , A(3),PS

qq,Q , A(3)
gq,Q to N = 14 were computed. For the flavor non-singlet terms, we calculated

as well the odd momentsN = 1 to 13, corresponding to the light flavor−-combinations.1 The
complete calculation took about 250 days of computer time. All our results agree with the predic-
tions obtained from renormalization, providing us with a strong check on our calculation. As an
example, we show the constant term ofa(3)

Qg of the unrenormalized OMEA(3)
Qg for N = 10

a
(3)
Qg(10) = TFC2

A

(

6830363463566924692253659
685850575063965696000000

−
563692
81675

B4 +
483988
9075

ζ4−
103652031822049723

415451499724800
ζ3−

20114890664357
581101290000

ζ2

)

+TFCFCA

(

872201479486471797889957487
2992802509370032128000000

+
1286792
81675

B4 −
643396
9075

ζ4−
761897167477437907
33236119977984000

ζ3 +
15455008277
660342375

ζ2

)

+TFC2
F

(

−
247930147349635960148869654541

148143724213816590336000000
−

11808
3025

B4 +
53136
3025

ζ4 +
9636017147214304991

7122025709568000
ζ3 +

14699237127551
15689734830000

ζ2

)

+T2
F CA

(

23231189758106199645229
633397356480430080000

+
123553074914173
5755172290560

ζ3 +
4206955789
377338500

ζ2

)

+T2
F CF

(

−
18319931182630444611912149
1410892611560158003200000

−
502987059528463
113048027136000

ζ3 +
24683221051
46695639375

ζ2

)

−
896
1485

T3
F ζ3 +nf T2

F CA

(

297277185134077151
15532837481700000

−
1505896
245025

ζ3 +
189965849
188669250

ζ2

)

+nf T2
F CF

(

−
1178560772273339822317
107642563748181000000

+
62292104
13476375

ζ3−
49652772817
93391278750

ζ2

)

.

Hereζi denotes the Riemannζ–function at integer argumenti and the termB4 is given by

B4 = −4ζ2 ln22+
2
3

ln42−
13
2

ζ4 +16Li4

(1
2

)

. (4.1)

It appears in all OMEs we calculated and is known to arise as a genuine mass effect.

5. Conclusions and Outlook

We calculated all massive 3–loop OMEs for even Mellin–moments N = 2...10(12,14) using
MATAD. This confirms for the first time, in an independent calculation, the moments of the
fermionic parts of the corresponding 3–loop anomalous dimensions [9]. Combining our results
with [2], this provides fixed moments of the heavy flavor Wilson coefficients ofF2 in the limit
Q2 ≫ m2. First phenomenological studies of the effects of our calculation are in preparation and
will be used extending the heavy flavor treatment from 2- to 3-loop accuracy in foregoing analyzes
[20].

1The massive OMEs for transversity have been calculated in [18]. The corresponding anomalous dimensions found
in [19] are confirmed in the color factors appearing in the present calculation and extended to higher values ofN.
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