
P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
3
0

The top-quark’s running mass

S. Moch∗

Deutsches Elektronen–Synchrotron, DESY
Platanenallee 6, D–15738 Zeuthen, Germany
E-mail: sven-olaf.moch@desy.de

U. Langenfeld
Humboldt-Universität zu Berlin, Institut für Physik
Newtonstraße 15, D–12489 Berlin, Germany
E-mail: Ulrich.Langenfeld@physik.hu-berlin.de

P. Uwer
Humboldt-Universität zu Berlin, Institut für Physik
Newtonstraße 15, D–12489 Berlin, Germany
E-mail: Peter.Uwer@physik.hu-berlin.de

We discuss the direct determination of the running top-quark mass from measurements of the total

cross section of hadronic top-quark pair-production. The theory predictions in theMS scheme

are very stable under scale variations and show rapid apparent convergence of the perturbative

expansion. These features are explained by studying the underlying parton dynamics.

RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field
Theory to Phenomenology) ,
October 25 - 30 2009
Ascona, Switzerland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
3
0

The top-quark’s running mass S. Moch

1. Introduction

The top-quark is the heaviest known elementary particle andit plays a prominent role in
the physics program of Tevatron and the Large Hadron Collider (LHC) (see e.g. [1]). The top-
quark mass is a very important parameter in fits constrainingthe Standard Model (SM), i.e. giv-
ing rise to indirect limits on the mass of the Higgs boson (seee.g. [2]). Currently, a value of
mt = 173.1+1.3

−1.3 GeV is quoted for the mass of the top-quark [3]. This amounts to an experimental
uncertainty of less than 1%. Due to the high mass the top-quark’s width is so large that it typically
decays before it can hadronize [4] so that mass measurementsproceed via kinematic reconstruction
from the decay products and comparison to Monte Carlo simulations. Thus, there is no immediate
interpretation of the measured quantity in terms of a parameter of the SM Lagrangian in a specific
renormalization scheme.

In order to address this issue, we have chosen the following approach. We start from the total
cross section for hadronic top-quark pair production, i.e.a quantity with well-defined scheme de-
pendence which is known to sufficient accuracy in perturbative Quantum Chromodynamics (QCD).
Its dependence on the top-quark mass is commonly given in theon-shell scheme, although it is
well-known that the concept of the pole mass has intrinsic theoretical limitations leading, for in-
stance, to a poorly behaved perturbative series. This typically implies a strong dependence of the
extracted value for the top-quark mass on the order of perturbation theory. So-called short distance
masses offer a solution to this problem. As we compute the total cross section as a function of the
top-quark mass in theMS scheme [5] we demonstrate stability of the perturbative expansion and
good properties of apparent convergence [6]. In particular, this allows for the direct determination
of the top-quark’s running mass from Tevatron measurementsfor the total cross section [7], which
is of importance for global analyses of electro-weak precision data.

2. The total cross section for top-quark-pair production

We start by recalling the relevant formulae for the total cross sectionσpp→tt̄X of top-quark
hadro-production within perturbative QCD,

σpp→tt̄X(S,m2
t ) = ∑

i, j=q,q̄,g

S
∫

4m2
t

ds Li j (s,S,µ 2
f ) σ̂i j (s,m

2
t ,µ 2

f ) , (2.1)

Li j (s,S,µ 2
f ) =

1
S

S
∫

s

dŝ
ŝ

φi/p

(

ŝ
S
,µ 2

f

)

φj/p

(s
ŝ
,µ 2

f

)

, (2.2)

whereSdenotes the hadronic center-of-mass energy squared andmt the top-quark mass (taken to
be the pole mass here). The standard definition for the partonluminosity Li j convolutes the two
parton distributions (PDFs)φi/p at the factorization scaleµ f , while the partonic cross sectionsσ̂i j

parameterize the hard partonic scattering process.σ̂i j depends only on dimensionless ratios ofmt ,
µ f and the partonic center-of-mass energy squareds.

The QCD radiative corrections for the total cross section inEq. (2.1) as an expansion in the
strong coupling constantαs are currently known completely at next-to-leading order (NLO) [8]
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and, as approximation, at next-to-next-to-leading order (NNLO) [9]. The latter result is based
on the known threshold corrections to the partonic cross section σ̂i j , i.e. the complete tower of
Sudakov logarithms inβ =

√

1−4mt
2/sand the two-loop Coulomb corrections, i.e. powers 1/βk

(see also [10] for some recent improvements). It also includes the complete dependence onµ f and
the renormalization scaleµr , both being known from a renormalization group analysis.

The parton luminosityLi j in Eq. (2.2) is fully known to NNLO accuracy from global fits
(e.g. [11, 12]). For a fixed collider energyS, it is a steeply falling function ofs. Thus, in the
convolution Eq. (2.1)Li j dominantly samples the threshold region of the underlying hard parton
scatteringσ̂i j , which justifies the use of threshold approximations for thelatter quantity. As an
upshot, the presently available perturbative correctionsthrough NNLO lead to accurate predictions
for the total hadronic cross section of top-quark pairs witha small associated theoretical uncer-
tainty [6, 9] (see also e.g. [13] for related theory improvements through threshold resummation).

3. The top-quark mass in the MS scheme

Colored particles in QCD are not asymptotic states of theS-matrix due to confinement. There-
fore the pole mass for quarks is a poor scheme choice since itsdefinition implies intrinsic uncer-
tainties of the order ofΛQCD, a fact that is often referred to in perturbation theory as the infrared
renormalon problem. It is well-known that short distance masses impose renormalization condi-
tions which avoid this problem. In a perturbative expansionin αs the pole massmt can be related
to the running massm(µr) in theMS scheme,

mt = m(µr)
(

1+αs(µr )d
(1)(µr)+ . . .

)

, (3.1)

where the coefficientsd(l) are actually known to three-loop order [5]. The basic idea for the direct
determination of aMS mass is to use the manifest dependence of the total cross sectionσpp→tt̄X on
the top-quark mass to estimate the parameter from the data for the measured cross section. For the
pole massmt we have

σpp→tt̄X = α 2
s σ (0)(mt)+α 3

s σ (1)(mt)+ . . . , (3.2)

which we can convert with Eq. (3.1) to theMS massm(m) (for simplicity abbreviated asm) ac-
cording to

σpp→tt̄X = α 2
s σ (0)(m)+α 3

s

(

σ (1)(m)+md(1)∂mσ (0)(m)

∣

∣

∣

∣

m=m

)

+ . . . , (3.3)

where the coefficientsd(l) have to be evaluated forµr = m (corresponding to the scale ofαs). In
Eqs. (3.1)–(3.3) we have confined ourselves here for brevityto NLO (see [6] for the formalism
through NNLO).

Eq. (3.3) gives a direct handle on the running mass at large scales. To illustrate the phenomeno-
logical implications for predictions at hadron colliders,we plot in Fig. 1 the scale dependence of
the total cross section at the various orders in perturbation theory. For Tevatron with

√
S= 1.96TeV

(and using the MSTW 2008 PDF set [11]), we compare the on-shell scheme with a pole mass of
mt = 173GeV with the corresponding predictions for a running mass with a value ofm= 163GeV.
For the computation of the total cross section in the on-shell scheme, we choose three (fixed) values
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Figure 1: The scale dependence of the total cross section at Tevatron with

√
S= 1.96TeV with MSTW

2008 PDF set [11]. The top-quark mass is taken in the on-shellscheme atmt = 173GeV (left) and in theMS
scheme atm= 163GeV (right) at LO (red), NLO (green) and approximate NNLO(blue). The dashed lines
denote the choiceµ f = mt (left) andµ f = m (right) for the factorization scale, the solid lines the maximal
deviations forµr ∈ [mt/2,2mt ] andµ f = mt/2,mt and 2mt (left) andµr ∈ [m/2,2m] andµ f = m/2,m and
2m (right). The vertical bars indicate the size of the scale variation in the standard range[mt/2,2mt ] (left)
and[m/2,2m] (right).

for the factorization scaleµ f = mt/2,mt and 2mt and, likewiseµ f = m/2,m and 2m for the MS
scheme. The vertical bands on the left in Fig. 1 denote the maximum and the minimum values for
a variation ofµr ∈ [mt/2,2mt ] (and, respectively,µr ∈ [m/2,2m]) for the three choices ofµ f .

In general, we observe in both schemes a reduced scale dependence as we increase the order
of perturbation theory, i.e. a reduced theoretical uncertainty. Also, we do observe apparent conver-
gence of the expansion upon including successive orders inαs. For the on-shell scheme, however,
the higher order corrections are quite sizable,O(30%) at NLO and anotherO(10%) at NNLO at
the central valueµr = µ f = mt . For the runningMS mass on the other hand both NLO and NNLO
corrections are negligible for the choiceµr = µ f = m. Remarkably, in theMS scheme we do find
even greater stability with respect to scale variations, which at NLO and NNLO is reduced by more
than a factor of two compared to the results in the pole mass scheme. Similar results and conclu-
sions have been found for top-quark pair production at LHC, see [6], although the improvement is
slightly less distinct than at Tevatron.

In order to address the underlying parton dynamics of relevance for the two mass schemes it is
instructive to consider the total parton cross sectionsσ̂i j , i.e. the equivalent expression of Eq. (3.3)
for the individual partonic channels. As a matter of fact, itturns out, that a result completely anal-
ogous to Eq. (3.3) can be derived. To NLO this is true because the boundary term in the conversion
mt → m from the convolution integral in Eq. (2.1) vanishes, so thatwe can apply Eq. (3.3) with the
simple replacementσ → σ̂i j .

In Fig. 2 we plotσ̂i j in both schemes, i.e. the on-shell scheme withmt = 173GeV and the
MS scheme with a running massm= 163GeV as a function of the partonic center-of-mass energy
s. The energy range is selected to match the discussion for theTevatron around Fig. 1. Of course,
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Figure 2: The parton cross section for the channelsqq̄, gg andqg at the scaleµ f = µr = m in the on-shell

scheme formt = 173GeV (left) and in theMS scheme form = 163GeV. Solid lines denote theO(α 2
s )

(LO) and dashed lines theO(α 3
s ) contributions (NLO). The energy range corresponds to Tevatron with√

S= 1.96TeV and the value ofαs to MSTW 2008 PDF set [11].

the Born cross sections remain largely unchanged the only difference in theMS case being the
slightly smaller numerical value of the mass (hence, largercross sections). At NLO, the perturba-
tive corrections in the on-shell scheme for the channelsqq̄ andgg clearly display the well-known
large logarithmic corrections near threshold. This is not the case for theMS scheme, which ex-
hibits a much reduced sensitivity to the threshold region. Due to the terms∼ ∂mσ̂ (0)

i j in the partonic
equivalent of Eq. (3.3), the NLO corrections are sizably reduced and the Sudakov logarithms are
numerically compensated to a large extent. Theqg-channel is new at NLO, thus it does not receive
any modification under scheme transformations at this order.

The parton cross sections of Fig. 2 enter the convolution with the parton luminosityLi j as
given in Eq. (2.1). To that end, recall that the hadronic cross section at Tevatron almost saturates
already for partonic center-of-mass energies

√
s<
∼600GeV. A detailed treatment of the threshold

region e.g. in Fig. 2 also needs to incorporatett̄ bound state effects which requires the application
of non-relativistic QCD including an all-order resummation of Coulomb corrections, see [14].

As an upshot, the parton level studies of theMS case in Fig. 2 provide us with a detailed
understanding of the excellent apparent convergence and scale stability seen in Fig. 1. In a direct
comparison to data [7], this leads to very stable results forthe extracted mass parameter. At LO,
NLO, and NNLO values ofm = 159.2+3.5

−3.4 GeV, m = 159.8+3.3
−3.3 GeV andm = 160.0+3.3

−3.2 GeV are
determined in [6], where the errors reflect the quoted experimental uncertainty for the total cross
section. In contrast, the on-shell scheme predictions would return rather different results at the
higher orders. Converting the best estimate for the runningmass (i.e. the NNLO value) back to
the on-shell mass by inverting Eq. (3.1) leads to a pole mass value ofmt = 168.9+3.5

−3.4 GeV. Within
errors, the result is consistent with the direct measurements, although as mentioned above, con-
cerns have been raised to interpret the quoted value [3] ofmt = 173.1+1.3

−1.3 GeV as a pole mass.
Since the experimental analysis is based to large extend on leading-order Monte Carlo prescrip-
tions, additional efforts are needed to study the detailed scheme dependence, see e.g. [15] for the
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renormalization group flow for heavy quark masses.

4. Summary

We have computed the total cross section for top-quark pair production with theMS mass
definition for the top-quark [6]. The approximate NNLO predictions exhibit a greatly improved
pattern of apparent convergence for the perturbative expansion and very good stability with respect
to scale variations. Comparison with experimental data haslead to a best estimate for the running
mass ofm= 160.0+3.3

−3.2 GeV, which is the first direct determination ofm(m) from top-quark pair-
production. The corresponding value for the pole mass ofmt = 168.9+3.5

−3.4 GeV is consistent with
current world average [3],mt = 173.1+1.3

−1.3 GeV.
Altogether, our approach [6, 9] provides reliable approximate NNLO predictions for the total

cross section for top-quark pair production and stable values for the top-quark’s running mass.
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