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1. Introduction

The proposal of the Svetistky-Yaffe conjecture [1] in theye&0's came as a new interesting
tool to both understand the physics of the confining/decorgitransition, and a smart way-out to
circumvent the problem of slow Monte Carlo simulations intice Gauge Theories (LGT).

In brief, the conjecture establishes a relation betweerddo®nfining phase transition of a
LGT with gauge groups in (d+ 1)-dimensions and the symmetry breaking phase transition of a
given spin model in(d)-dimensions with symmetry grougg, i.e. the center of the grou@. In
particular, in the case of continuous phase transitionga@dard renormalisation group analysis
shows that the critical behaviour of the two models must kestime, i.e. they belong to the same
universality class. Hence, universal quantities likeicaltexponents and amplitude ratios can be
(more easily) calculated in the spin model and then extenddide LGT. Another key feature of
the conjecture is the possibility to establish a dictionaeyween the observables of the LGT and
the corresponding ones in the spin model.

After more than twenty years, the Svetistky-Yaffe conjeetis considered a reliable tool to
study a LGT in the neighbourhood of the deconfinement triamsitAs a step forward, one can
try to take advantage of the conjecture, and get a deepetitgtie understanding of a LGT in
the neighbourhood of the deconfining transition. From tligipof view, three-dimensional LGT
offers a unique opportunity, because they correspond tedimensional spin models. There are
diverse motivations making such a class of spin models dgmad one.

Onthe one hand, they are exactly solved at the critical pomtwhere they are relevant for the
analysis of the LGT. In fact, it was shown that a large classpif models displaying a symmetry
breaking phase transition allows for an exact solutionrimgeof two-dimensional Conformal Field
Theories (CFT) [2]. What makes the two-dimensional caseiapis the fact that the conformal
algebra becomes infinite-dimensional, and as a consequbaceorresponding theory is much
more constrained that in other dimensions. Such a richmesssucture reflects at the quantitative
level too. In fact, it is possible to give a complete clasatiiun of the space of fields of a given CFT
together with their exact scaling dimension. The most dim@plication of this fact is the exact
calculation of all the critical exponents of the correspagdohase transition. Another interesting
feature is given by the possibility to calculate amypoint correlation function among the fields
of the theory, as solutions of some well established diffea¢ equations. In the perspective of
the S-Y conjecture, such host of exact results can be diregtended to the corresponding LGT,
giving a complete characterisation of the universalitgslaf the deconfinement transition.

On the other hand, the S-Y conjecture can be used to give ectigé description of the LGT,
by means of the corresponding spin model, not only at thé&akipoint but also in the scaling
region. The first non-trivial step is to show that the platpieperator of the LGT is mapped into a
mixture of the energy and identity operators [3]. Then, fassible to show that the scaling region
of the LGT corresponds to the thermal perturbation of the @€dcribing the critical point of the
spin model.

This aspect has important consequences, because it haaérssich QFTs turn out to be
integrable for most of the cases of interest in the presariegb Integrability means that an infinite
number of integrals of motion exists. The main consequengé+1) dimensions is the fact that
the scattering theory is very constrained, becaus&-thatrix is factorised in products of two-body
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interactions, and inelastic processes are forbidden. elfaess allow to write down the so-called
Yang-Baxter equations for the 2-parti@amatrix. Then, such ag-matrix can be computed exactly
by imposing the previous equations and the usual requiresrafnunitarity and crossing (for a
review about Integrable QFTs see [4]). An obvious consecgiés that also the spectrum of the
masses of the bound states of the theory is known exactbe #irey are represented by the simple
poles of theS-matrix in the physical strip.

Another useful aspect of dealing with an integrable thesmhé possibility to use the spectral
expansion (form factors can be computed exactly in intdgr@d-Ts) for correlation functions.
Such a fact gives the possibility to describe with a good déaccuracy the large distance be-
haviour of the correlation functions. As we will see in thdéldwing, this is a key point in our
approach.

In the present contribution we gathered our main resultsiodt in several models, and with
different types of observables. In sect. 2 we report on thdysbf the baryon (three-quark) potential
in the 3D SU(3) LGT using the three-spin correlation functaf the 2D 3-state Potts model [5].
Sect. 3 is devoted to the study of the behaviour of the flux thimkness in the 2D SU(2) LGT
via the corresponding 2D Ising model [9]. Finally, in sectvd report on the exact calculation of
the ratio of k-string tensions in the 3By LGT my means of the mapping on the 2D Sine-gordon
model [14].

2. Three-quark potential [5]

In these last years much interest has been attracted byuithe of the three-quark potential
in LGT. Besides the obvious phenomenological interest efgioblem, the three-quark potential
is also a perfect tool for testing our understanding of the fllbe model of confinement and of
its theoretical description in terms of effective stringdets. Thanks to the improvement in lattice
simulations (a summary of numerical results can be foun@] fhe qualitative behaviour of the
three-quark potential is now rather well understood (foeeent review see [7]). Let us briefly
review the key points.

For large interquark distances the three-quark potertialdll described by the so-calléd
law which assumes a flux tube configuration composed by thriegs which originate from the
three quarks and join in the Steiner point which has the ptepé minimising the overall length of
the three strings. This picture is also in agreement withtwha would naively find using standard
strong coupling expansion. Notice however that due to tlhighening transition this is only a
gualitative indication, and cannot be advocated as a “firofdthe Y law.

At shorter distances a smooth crossover toward the so dallad is observed. According to
theA law the three-quark potential is well approximated by tha st the three two-quark interac-
tions. More precisely tha law assumes that the three-quark correlator (let us c@ (i1, X2, X3)
wherex; denotes the position of thé" quark) is related to the quark-antiquark correld®afx;, X;)
as follows:

G3(X1,X2,X3) ~ \/Gg(Xl,Xz) Gz(Xz,Xg) GZ(X]_,X3) (21)

thus leading to a potential which increases linearly withglim of the three interquark distances.
The scale where the transition between these two behaweerss to occur, according to the most
recent simulations, is around 0.8 fm.
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To improve our understanding of the baryon states, it woeldhtpportant now to have some
guantitative insight in the above described picture, as asto have some theoretical argument
to explain why instead of having a single shape stable fothallinterquark distancesa— Y
crossover occurs. Moreover, since the crossover regiopamspto occur exactly in the range of
distances which is interesting from a phenomenologicahtpaoi view, it would be important to
have some kind of theoretical description of this crossevién which to compare the numerical
data.

In this respect the present study of the three-point funcimothe 2dZ3 Potts model is a
perfect laboratory to address this problem. Besides theuab\similarity of the two settings it is
also possible to find a direct relation, since by the Svetitékife conjecture the behaviour at high
temperature of the three-quark correlator f@\&(3) or aZ3z gauge model in (2+1) dimensions is
mapped into the behaviour of the Zg Potts three-point function, in analogy to what happens for
the quark-antiquark potential which is mapped onto(the) correlator.

In the large distance regime, the form factor approach {slezxpansion) plays a central role
due to the integrability of the theory. The appearance oftener point is quite natural in such
a framework (even if completely non-trivial), and it is sighy related to the integrable structure
of the model. Here we quote the final result (leading and salihg orders) in the case of an
equilateral triangle of sidR (see [5] for details)

(FOPTA

G(3>(X1,X2,X3) ~ A T AAKQ (\/ﬁmR) +

+ G(FE)Z/_W %FXA(B +im/3)Ko <2choshg> (2.2)

wherery = v/3R is the minimal distance given by the emergence of the Stginait. On the
other hand, the short distance regime is studied by meame &a-called Conformal Perturbation
Theory (CPT) [8], which is a perturbative approach built mpioe exact CFT solution of the model
at the critical point (integrability is not needed here). V&t notice that, at criticality, tha law is
exact. In fact we see that the relation (2.1) is fulfilled dlalsy 2- and 3-p correlator functions of a
given CFT. Hence, we used the CPT framework to compute thhrec@ns induced by the thermal
perturbation, and we are able to explicitly compute theysbdtive corrections to thé law.

From a physical point of view the scenario which emerges imaosh crossover, as the dis-
tance among the three points increases, from a short destagitaviour in which the three point
function is dominated by the three spin-spin interactidos@the edges of the triangle to a large
distance behaviour in which the strong coupling expeatatibe three spins joined by a path of
minimal length) is fully realised.

This scenario is confirmed by the numerical simulations whign out to be in remarkable
agreement with our theoretical results (see figures 1, 2ledd the important consequence of
having exact analytic results for the two expansions isweaare able to compare our predictions
with triangles of any size, both smaller and larger than trestation length.

In conclusion, we would like to stress that the S-Y conjeztaliowed us to check with some
solid field-theoretic argument that, at least near the dawement temperature, a crossover be-
tweenY andA laws occurs at some intermediate scales.
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Figure 1. Three-point function (suitably normalised, see [5] forails): spectral expansion (form factors),
and Monte Carlo data.
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Figure 2: Three-point function (suitably normalised, see [5] foradls): short-distance expansion (Confor-
mal Perturbation Theory), and Monte Carlo data.

3. Flux tubethickness[9]

The distinctive feature of the interquark potential in afating gauge theory is that the colour
flux is confined into a thin flux tube, joining the quark-antigki pair. As it is well known the
guantum fluctuations of this flux tube, which are assumed tddseribed by a suitable effective
string model, lead to a logarithmic increase of the width e flux tube as a function of the
interquark distanc&®. This behaviour was discussed many years ago by Lischerstitiand
Weisz in [10] and is one of the most stringent predictionshef éffective string description of
confining LGTs.

A natural question is what happens of this picture at the nfgmement point. One would
naively expect a sudden jump of the flux tube thickness froogdd a linear dependence from the
interquark distance. However we shall show in this work thitis a misleading picture.

A tentative answer to this question can be obtained in treetfe string framework. By using
a duality transformation it is possible to show that as tmeperature increases the log behaviour
smoothly moves to a linear behaviour, thus excluding a Idpé&ar transition at the deconfinement
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point. The simultaneous dependence of the flux tube thickoeshe two variableR andN; can be
evaluated exactly only in the gaussian litmiFor the details of the calculations we refer the reader
to the paper [12].

To the purpose of the present work, we are only interesteleitvto asymptotic limits: large
N: and finiteR (which is the zero temperature limit where we expect a log tyghaviour) and the
opposite one: largR and smallN; which is high temperature limit.

One finds: 1 R
W2 ~ o Iog(i) (N, >>R>>0) (3.1)
1 mR Nt
%(mﬂog(ﬁ)) (R>>N) (3.2)

As it is easy to see in the second limit the logarithmic depend is orl\; (the inverse of the tem-
perature) and not oR which appears instead in the linear correction. Howevearrigult strongly
relies on the effective string approximation (even worsgh@ygaussian limit of the effective string)
and it would be nice to have some kind of independent evidence

Hence, we propose an alternative way to address the abowtiaquén the vicinity of the
deconfinement transition using the Svetitsky-Yaffe catjex which is a very powerful tool to
study the finite T behaviour of a confining LGT in the vicinitf/tbe deconfinement point, at least
for those LGTs whose deconfinement transition is of secoddror

This gives us a non trivial opportunity to check the effeetsiring predictions. If we choose a
(2+1) dimensional LGT with a gauge group with cergllike the gauge Ising model or the SU(2)
or SP(2) LGTs which all have continuous deconfinement ttians), the target spin model is the
2d Ising model in the high temperature symmetric phase faclhwbeveral exact results are known.
In particular we shall see that it is possible to study amzily the equivalent of the flux tube
thickness. Leaving the details to [9], it is possible to shbat, by means of the spectral expansion
over form factors, for very large separations between tiesgguarks) the flux tube thickness in
the Ising model behaves like

m R

M:§m+..., N; — Be. (3.3)

Remarkably enough the results that we find agree, up to niversal constants, with the
effective string ones thus strongly supporting the idea srhaoth transition from a log to a linear
behaviour as the temperature increases. A numerical catfomof such a scenario has been
recently found in [13].

4. K-string tensionsratios [14]

In a recent paper [15], it was argued from simple scaling @riigs of suitable Polyakov loop
correlators that the k-string tensions have the followimg temperature asymptotic expansion

O(T) = ok—c7—6TT2+ﬁ(T3) o= (d—Z)%, 4.1)

*Including higher order terms in the effective string actimakes the problem too difficult, even if some recent
result in the framework of the covariant quantisation ssggleat some simplification could occur if one chooses to
study the whole Nambu-Goto action [11].
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wherec is the central charge of the underlying 2D conformal fieldotlyedescribing the IR be-
haviour of the k-string. As a consequence, their ratios gpeeted to be constant up 16 terms:

ak(T)
a(T)

The low temperature data presented in support of this eafieatwere taken from Monte
Carlo simulations on a particular system, namely a (2+fjetisionalZ, gauge model, which is
the simplest exhibiting more than just the fundamentahgtri

The main conjecture we want to verify in this work is tt@{(T)/o(T), at least in thaZ,
gauge system, is in fact independent of the temperatureeiwtiole of the confining regime. To
check this idea, a handy fact comes useful, namely that,easytstem approaches the deconfine-
ment transition, and the string picture begins fading, lagoapproach is made available by the
Svetitsky-Yaffe (S-Y) conjecture [1], which allows to refoulate the system in a totally different
perspective, based on a two-dimensional integrable thaomhich, however, the nedli: counter-
part of the low-temperature result cited above can be nilwelgd. It turns out that the deconfine-
ment transition of the 3[Z4 gauge model is second order and, according to the SY congectu
belongs to the same universality class of the 2D symmetrikiasTeller (AT) model. As a matter
of fact, such a model possesses a whole line of critical pafing which the critical exponents
vary continuously. The S-Y conjecture tells us that if a 2d#hehsional gauge model with center
Z4 displays a second-order transition, then its universaldgs is associated to a suitable point of
the critical line of the 2D AT model [16]. For instance, it Hasen argued [18] that the critical 2+1
SU(4) gauge theory belongs to the universality class of a speoiat pf the AT model, known as
the four-state Potts model. More generally, the class ofeisoglith gauge groufZ, depends on
two coupling constante and 3, and the universality class of the deconfining pdntaries with
the ratioa /3.

The two-dimensional AT model can be seen in the continuunit s a bosonic conformal
field theory plus a massive perturbation (i. e. a Sine-Gottlenry) driving the system away from
the critical line. Thus, a map between (a neighbourhood hef) AT critical line and the Sine-
Gordon phase space is provided. This theory is integrahbt ttze masses of its lightest physical
states (first soliton and first breather mode, of madéemdM; [17]) correspond to the tensions
o(T) andoz(T) nearT;, whose ratio can be analytically evaluated and turns ou¢to b

. O'Q(T) . Ml . . 7_'[ _
TILmTC o) M _23|n2(2v 1), (4.3)

=% o(m9), 4.2)

wherev is the thermal exponent in two dimensions.

As a consequence, on the gauge side, we have two differerts wwayerify the conjecture.
One is to directly estimate the ratdd; /M by measuring the Polyakov-Polyakov correlators in the
two non-trivial representations @, near the deconfining temperature. The other is to evaluate th
thermal exponent of the gauge system at the deconfining ratope. Either method gives a value
of M1/M which can be compared with the ratin /o evaluated af” = 0. In particular, choosing
(a,B) = (0.050,0.207), we obtained the following results:

e atT =0 we have [15] o
;2 = 1.61013), (4.4)
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e atT — T, , the fit of the data for the Polyakov-Polyakov correlatorshie fundamental and

double-fundamental reps gives [14]
O(T~T)/o(T~T) = % =1.612(46), (4.5)

e atT — T, , the evaluation of the thermal critical exponengives [14] (the systematic error

is quoted in square brackets)
T

0(T~Te)/o(T~Te) = % = ZSinE(Zv —1)=1612471)[107 , (4.6)

where we can see that the latter estimates at T;” give compatible results which nicely agree
with the ratioo, /o evaluated al = 0.
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