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1. Introduction

It is interesting to study color confinement mechanism int@ua Chromodynamics (QCD).
The dual superconductor scenario of the QCD vacuum may lenaiging candidate for that mech-
anism. In particular, it is known that the string tensiorncaddted from the Abelian and monopole
parts reproduce well the original one, once we perform arliat@rojection in Maximally Abelian
(MA) gauge. It is so-called "Abelian and monopole domindndgut it has been diffcult to see
these phenomena in any other gauges.

Recently, we have demonstrated that the gauge-invariaghata monopole can be con-
structed in the pure Yang-Mills theory without any fundata¢scalar field. The success is achieved
based on a new viewpoint proposed in [1] for the non-lineange of variables (NLCV), which
was called Cho—Faddeev—Niemi (CFN) decomposition [2]§8k also [4]. We have found that
the magnetic charge of our lattice magnetic monopole iseptyf quantized. Moreover, we have
confirmed dominance of our magnetic monopole in the stringita[5], while it was first shown
in [6] in the conventional MA gauge [7]. Therefore we can shbe gauge invariance of the dual
superconductor scenario of the QCD vacuum.

In this talk, we summarize the recent results on a latticenfdation of Yang-Mills the-
ory based on NLCV and a gauge-independent derivation of fAtsedominance and magnetic
monopole dominance in the string tension. We restrict tlleviing argument to SU(2) gauge
group, for simplicity, although the formulation has beeteeded to SU(N) gauge group [8].

2. Non-Linear change of variables (NLCV) in lattice SU(2) Yang-Mills theory

We have proposed a natural and useful lattice formulatiah@NLCV in Yang-Mills theory
corresponding to the CFN decomposition [2, 3]. It is a mimmiequirement that such a lattice
formulation must reproduce the continuum counterparteémiive continuum limit.

On a lattice, we introduce the site variallg, in addition to the original link variabl®ly ,,
which is related to the gauge potentfg) (x) in a naive way:*

Uy p =exp(—iggA, (X)), (2.2)

wherece is the lattice spacing anglis the coupling constant. Herg is Hermitian,n! = ny, and
Uy is unitary,U)Z“ = ijul. We callny a color unit vector field, since it is used to specify only the
color direction in the color space at each space-time poidiits magnitude is irrelevannf = 1).

The link variableUy ;; and the site variablay transform under the gauge transformation 11 [1]
as

UX7IJ — QXuX7HQT = UI nX — anxgl = n;( (22)

X+ U X,

Then the link variabléJ, , is decomposed into two parts:

UX,[J — XX,[,IVX,[J € SU(Z), XX,[J;VX,[J € SU(Z) (23)

*In general, the argument of the exponential in (2.1) is the ihtegral of a gauge potential along a link frarto
x+ . Note also that we define a color vector fielg) := n(x)ga/2 in the continuum, whiley := nf g on the lattice
for convenience, wherea (A= 1,2,3) are Pauli matrices.
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in such a way that the color fielt} is covariantly constant in the background fi®lg;:
NV = Vi Nt e (2.4)
and that the remaining field, , is perpendicular to all color fields, :
tr(nUsxuVy ;) = 0. (2.5)

Both conditions must be imposed to determifg, for a given set ohy andU, ;. By solving the
defining equation(2.4) and (2.5), the link variabMé ;, is obtained up to an overall normalization
constant in terms of the site variabigand the original link variablély ,;:

\7)(7“ :\7)(’“ [U,n} :Ux’u+nxux7unx+u. (26)

Finally, the special unitary link variabM, ,[U, n] is obtained after the normalization:

~ 1 ~t ~
Vx7“ :VX7IJ [U,n} ::VX7IJ/ Etr[\/XTIJVX/IJ]' (2.7)

It is easy to show that the naive continuum limit-= O of the link variablevy , = exp(—iegV 4 (X))
reduces to

Vu(x) = (MX)AZ(X)n(X) + éaun(x) x n(x), (2.8)

which is nothing but the continuum expression of CFN vagailote that th&/, , transforms like
a usual link variable under the gauge transformation Il as

Therefore, we can define tlgauge-invariant quxG)p[U,n], (plaguette variable) by
éX#V[Uan] = s‘zarg(tr{(1+ nX)VX7Lle+u viT+v quTv}/tr(l))- (2-10)

It is also shown that the naive continuum limit of (2.10) reelsl to the gauge-invariant field
strength;

O ~ Au(MYALX)) — 3, (M(XAA(X) +g n- (0un><0\,n):_71tr(2nFuV[V]), (2.11)

which plays the similar role that 'tHooft—Polyakov tenstayed in describing the magnetic monopole
in Georgi—-Glashow model.

It has been shown that the SU(Z) master Yang-Mills theorjtevriin terms oty ;, andny has
the enlarged local gauge symme®}.2 = SU(2)@ ., x [SU(2)/U(1)]¢ ., larger than the local
gauge symmetrgU(2){» ., in the original Yang—Mills theory[1]. In order to eliminathe extra
degrees of freedom in the enlarged local gauge symm}fg&l, we must impose sufficient number
of constraints, which we call theduction condition. We find that the reduction condition is given
by minimizing the following functional

Frin.U] = (1- tr(neUs u N gUy ) /(1)) (2.12)
XA
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with respect to the color vector fields, } for given link variables{Uy , }. Thus color vector field
Ny is determined by, = n; in such a way that

min,Fr[n,U] = Fg[n*,U]. (2.13)
The functionalFg can be rewritten in the following way:

FrinUl= 5 (1-ZPUInEnd),  JPU] = tr(0"Uxuo®U,,) /tr(1) (2.14)
<Xy>
Therefore, the functiondlr can be regarded as the spin-glass system.
We solve the stationaly condition

dFg[n,U]/dn =0 (2.15)

in order to minimize the functiondtr. Note that there exist local minima which satisfy this con-
dition. The overrelaxation method should be used in ordapfmroach the global minimum more
rapidly.

3. Gauge-independent "Abelian" dominance in the Wilson lo@

Two of us[9] discussed a gauge-independent definition ofliabelominance in the Wilson
loop operator and a constructive derivation of the Abeliamihance through a non-Abelian Stokes
theorem via lattice regularization.

First, we insert the complete set of coherent stag#\ > to the Wilson loop operatdi; [C]
at every sitex on the loopC to obtain

2 [ty / du(&) < E AU A >, (3.1)

I=<x x+au>eC

Second, we consider decomposing the link figld, given by eq.(2.3), and we impose two
requirements:

() ENVxuxran € A =U(1)
() pclX, &)= [Ti=<xxtap>ec < EX?A‘XX,IJ|EX7/\ >= const
Here,.77 is a stability group of the gauge gro@G= SU(2), andé € G/L%Z. Under the decompo-

sition (2.3), the full Wilson loop reads

wicl=T] [du@incx.&l [ < EANulEeanA> (3:2)

|=<xx+afi>eC

It is shown that only a diagonal element0féy, A|Vy i |Exyap, /A > contributes tV; [C] if and
only if the requirement (l) is satisfied. Physically, requémt (1) is a condition for the field strength
Fuv[V](x) of the restricted field/,(x) to have only theAbelian partproportional to the color field
n(x) at the spacetime point x.
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The requirement (I1) allows us to factor opt[X, £] and we obtain

W ] = ConstWapelC] = const( [ / du&) 1 <EAVkulbhanA>  (33)

|=<xx+afi>eC

It can be shown[9] that requirement (I) and (ll) are equivaido defining equation (2.4) and
(2.5) which are able to uniquely determine the NLTKerefore, (3.3) suggest thék [C] agrees
with the restricted on®/apel[C] up to a constant factor in NLCV;

(W[C]) = (WapelC)) = <tr(|1v|>/tr<1)> . (3.4)
le

Since the restricted fielf ,(x) is defined in a gauge-covariant and gauge independent way, we
have obtained a gauge-invariant (and gauge-independefmjtebn of the "Abelian" dominance.

4. Gauge-independent Monopole dominance in the Wilson loop

We construct the gauge-invariant field strength (2.10) toaex configurations of the (integer-
valued) magnetic monopole currefl, , } defined by

)

1 —
kXLl = _Eguvpgdvex+u7po—. (41)

This definition agrees with our definition of the monopolehia tontinuum limit (divided by &).

In order to study the monopole dominance in the string tensite proceed to estimate the
magnetic monopole contributiofi\i,(C)) to the Wilson loop average, i.e., the expectation value of
the Wilson loop operatofW; (C) ). We define the magnetic pat,(C) of the Wilson loop operator
W; (C) as the contribution from the monopole currégy, to the Wilson loop operator"

X7IJ
_ 1
Nyy = ZALl(x—%)Es“aByaas;ww St gy = s (4.3)
X

whereN, , is defined through the external soudgg, which is used to calculate the static potential:
0’ denotes the backward lattice derivatiﬂllgafx = fx— fu_p, Siﬂy denotes a surface bounded by the
closed loopC on which the electric sourck , has its support, antl, *(x— X) is the inverse Lattice
Laplacian. We obtain the string tension by evaluating theraye of (4.2) from the generated
configurations of the monopolek, , }. Note that (4.2) is a gauge-invariant operator, since the
monopole current defined by (4.1) is a gauge-invariant kéia

TThe Wilson loop operatdi (C) is decomposed into the magnetic pak(C) and the electric pake(C), which
is derived from the non-Abelian Stokes theorem, see [10]this talk, we do not calculate the electric contribution
(We(C)) whereWe(C) is expressed by the electric currgpt= dyFpy.
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5. Numerical results

First of all, we generate the configurations of SU(2) linkables{U, , }, Uy , = exg—igeA,(X)],
using the standard Wilson action based on the heat bath thettext, we generate the configu-
rations of the color vector fieldiny} according to the (2.13) together with the configurations of
SU(2) link variables{Uy , }. Then we can construéi, ,[U.n]} from (2.7) and{ky , } from (4.1).

We calculate the respective potent¥@lR) from the respective averad@/(C)):

VI(R) = —Iog{(V\l,(R,T))/(V\/,(R,T - 1)>} (I = f,Abel, m) (5.1)

whereC = (R, T) denotes the Wilson loop with side lengthdR andT.

The numerical simulations are performed on afi thitice atf3 = 2.4 by thermalizing 3000
sweeps. In particular, we have used 100 configurations @oca#ficulation of the full and Abelian
potential and 50 configurations for the monopole potentiadach case with 100 iterations. In
order to obtain the full SU(2) and Abelian results, espégiale used the smearing method [11] as
noise reduction techniques. Fig.1 shows all potentialsuastions ofR. The obtained numerical
potential is fitted to a linear term, Coulomb term and a camderm:

Vi(R) = giR—ai/R+g;, (5.2)

whereg is the string tensiony is the Coulomb coefficient, arxis the coefficient of the perimeter
decay:(W (R T)) ~ exg—GiRT—¢(R+T)+ aT/R+---]. The results are shown in Table 1.
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Figure 1: The full, Abelian and monopole potentials as functionRait 3 = 2.4 on 16 lattice.

We find that the Abelian partane reproduces 93% of the full string tensian and the
monopole parby, reproduces 94% adanel. Thus, we have confirmed the abelian and the monopole
dominance in the string tension in our framework. In gendhel monopole part does not include
the Coulomb term and hence the potential is obtained to aracyg better than the full potential.
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Table 1: String tension and Coulomb coefficient

o a
U (full) 0.075(9) 0.23(2)
V (Abelian) 0.070(4) 0.11(1)
monopole 0.066(2) 0.003(7)

6. Conclusion

In this talk, we have proposed a new formulation of the NLCVWahg-Mills theory, which
was once called the CFN decomposition. The Abelian and nmaaagominances in the string
tension has been shown anew in the gauge invariant way, afhéney have been so far shown
only in a special gauge fixing called MA gauge which breakscthier symmetry explicitly.
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