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1. Introduction

Chiral symmetry breaking is one the key feature of QCD. There is a veritietway of
stating the physics of this phenomenon: a small quark mass leads to a mp@esatignment of
the QCD vacuum (this is a strict quotation frofh [1]). Since the QCD partitioation reads

2= ([]det7+m)) = ([] [0+ m0) (1.1)

in order for this to be possible there must be an accumulation of Dirac opeignvalues near
zero (otherwise the effect of a small quark mass would be overwhelmetubij larger eigenval-
ues). This message is actually encoded in the Banks Casher refation [2]
() = 210

relating the chiral condensate (the order parameter of the transitioriasesido spontaneous sym-
metry breaking) to the density of eigenvalues of the Dirac operator spectru

(1.2)

p(N) = (3 8(A o)) (L3)

Altought not a natural observable in Field Theory, the Dirac operatectsppm has in force
of ([L.3) become a natural probe for the chiral transition. Recent wiirkds investigated the
field theoretic status of spectral observables, in particular with respdabetorenormalization
properties. From a numerically point of view, it should be pointed out th#ide QCD can quite
naturally compute[(T.3), once a lattice regularization of the Dirac operatorgn.g

2. TheDirac spectrum and Perturbation Theory

Since the free Dirac operator has a vanishing eigenvalues densityateaoge is lead to the
conclusion that the small eigenvalues are due to gauge interactions. i$temtally a natural
candidate: any quantum interaction produces a repulsion among theaigenw\Vith this respect
Perturbation Theory is in a tantalizing situation:

e Oon one side, it sits (deep) in the chirally restored regime, while one looksnfeffect which
lives at its border;

e on the other side, it gives a unique opportunity to follow the fate of eigeasai their
mutual repulsion.

We want to emphasize that our work is still at a very preliminary stage. licpkar, we do
not want to address here the subtleties which arise in properly definiegiarltpative expansion
of [L.3). We will discuss a@uick and dirtyprocedure in which we first compute the perturbative
corrections to the free spectrum eigenvalues

A=A+ B VAP 4 B IANP

and then resum the expansion at given values of the couplirgiven these summations, we can
proceed to compute a density of eigenvalues much the same as in non-gt@eréucbmputations
of the spectrum.
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3. The Dirac Spectrum in NSPT

Numerical Stochastic Perturbation Thedly [4] relies on an expansioe sbilation of Langevin
equation. In the case of LGT

Uxa(T;n) = 14 5 B792U (1:m). 3.1)
k=1

T is the stochastic time of Langevin evolution, with gaussian ngiseor asymptotic values of the
stochastic timey)-averages. . .), of observables converge order by order to quantum field theory
averages...)QrT.

Plugging [3.L) into the Dirac operator turns the computatior of (1.3) into thealypigen-
value/eigenvector problem in PT

M=Mo+N=Mo+ 3 dN  Mla)=e¢la) (3.2)
|
which has to be solved by

e=g+ga+0°e+... |a)=]|ao)+glas)+0?|az)+... (3.3)

Due to the (huge) degeneracy of the free field solution, for every edidiem we need to explicitly
separate components inside and outside the starting (degenerate) aigsiresp

|a) = |ao) +Ryla) +Poula). (3.4)
In the previous formuladap) is the direction in the free (degenerate) eigenspace singled out as the
zeroth order of the solutior®;, is the projector onto the component of the free eigenspace which
is orthogonal tdao); Pout projects instead outside the free eigenspace. We finally get the iterative

solution
n

&= Y (0o/Nn_ifa) (3.5)
o

Pout| @) = (€ — Mo — PoutN) ™ ( PoutN| o) + PoutN R} @) )
Phla) = (e—e—PuN)™t (PiN|ao) + P NPywyila)) .

This is the (closed) solution only provided degeneracy is lifted at firsgro®hould this not be the
case, the formalism should be generalized by introducing a new projecteath level of degen-
eracy still present (the solution is nevertheless closed also in such a sitwatich actually occurs
in our computations).

In standard non-perturbative LGT computations of the Dirac operagmtiapn one gets distri-
butions of eigenvalues by generating configurations and computing th&wpeon each of them.
The density of eigenvalues is then simply obtained by plain histograms of thiksre®ve stress
once again that at this stage of our work we will adhere tonthiwe recipe of first computing
the eigenvlaues in PT, then summing the expansions at given values ofuthéngoand finally
constructing histograms much the same way as in the non-perturbative case.
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4. Results

In figure (1) we plot examples of our results: we collect all the measurenf@nfirst (trivial)
and second (one loop) order corrections to free field results for tenddowest lying eigenspace
on a @ lattice. We stress that this eigenspace is degenerate (the dimension of thispeigge is
144), but on top of this degeneracy the histograms entail the multeplicity wbitles from the
number of measurements.

O(B_UZ) correction to second eigenvalue on 6 O(B_l) correction to second eigenvalue on 6
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Figure 1: First (trivial) and second (one loop) corrections to theoselc(lowest lying) free field eigenvalue
on a @ lattice (overall distributions of the measures).

Figure (2) displays data once the average over all the measurementsdmataken. In this
case we plot first order corrections (as one expects, they averageojofor lowest lying and sec-
ond lowest lying eigenvalues. There are issues which are worth sge&sist of all, one can ispect
degeneracies which are not lifted. Second, the distributions of comedtiathe two eigenspaces
differ quite a lot.

Figure (3) displays another interesting feature. In this case we plot adidet correction,
which enlights how higher orders display long tails. One probably needsédutly assess when
the free field degeneracy is actually lifted, as it is clear from the impactrafmdéators in[(3]5).

With this respect we point out that one can always check the accufdleg computation by
considering quantities like

(MDD =... (Tr(d'D) K =...

They can be both computed directly and reconstructed from the eigeswhsiebution, even-
tually validating the latter.
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O(B’“ 2) corrections to lowest lying free eigenvalue O(B’l/ 2) corrections to second lowest lying free eigenvalue

(64; free eigenspace degeneracy is 24) (64; free eigenspace degeneracy is 144)
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Figure 2: First (trivial) corrections to the first (lowest lying) andcond free field eigenvalue on 4 lattice
(averages over Langevin histories). Free eigenspace eegees are 24 (left) and 144 (right).

O(B_le) correction to second eigenvalue on 6

Figure 3: Third correction to the second free field eigenvalue ofi @lice: while it is centered in zero (as
expected), it displays long tails.

We can now go back to owguick and dirtyprocedure to inspect the impact of the perturbative
corrections. Basically, we can sum the contributions at any given vdlthe @oupling and try to
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follow the resulting distribution of eigenvalues as the gauge intercation corweplay. We plot
in figure (4) what we get at one loop.
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Figure 4: The evoultion of the eigenvalues density: from free fieldti( = ) to the intercating case (at
different values of the couplinf).

Figure (4) is something like a sequence of pictures taken while the interacgantched on.
One starts at zero coupling, where the key feature of the free field igsptag: bins are cen-
tered where free field eigenvalues sit, and bins heigth simply entails theataggrof the various
eigenspaces. Notice anyway that at this resolution some bins actually fesuitihe contribution
of two free field eigenvalues sitting very close to each other. While the initenas switched on
(i.e. the value of the inverse couplirng decreases) the bins spread and overlap and eventually a
non-zero density near zero is generated. A natural question arisese Wo eigenvalues moving
to zero come from? One should remember the point we made on repulsion aigengaues.
Figure (5) displays an example of how this takes place: we plot the contribtiotiocoming from
two eigenvalues starting very close to each other in free field.

It is worth better assessing the impact of the repulsion among the coupleeotifyenvalues
we have just looked at. It actually turns out that they give a substantmtilootion to the rear-
rangement of the eigenvalues density: one can recognize their splitting oighib of figure (6).
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Figure5: Following the repulsion of two eigenvalues oh @hey start very close in free field limit and then
strongly repel each other.

The values of the first 5122 free field eigenvalues (black) on 6" and how they are corrected at one loop (red) at 3 =7.5
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Figure 6: The first 5122 free eigenvalues on 4 léttice (black line): the lenghts of each segment is the
degeneracy in free field. Red curve displays how they moveeataop a3 = 7.5.
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Black line in figure (6) is nothing but another way of plotting the first row giife (4): we plot
the first 5122 free eigenvalues and the lenght of each plateaux is jus¢giemeracy of each free
field eigenspace. The superimposed red line shows the summation (abiistfdahe perturbative
series for these eigenvaluesfat 7.5.

Some caveats are of course in order:

e Is this a finite-volume effect? At the moment we have actually got the same qualitati
picture at any (still moderate) size we studied.

e |s this a finitea effect? Testing this is more difficult.

e One should carefully take care of the order of limits which is in place in the 8&dsher
relation.

A few following steps are on their way: we will repeat the computation in thé&dpatind of
differentZ(3) vacua and to try to reconstruct the Polyakov loop from the spectrahugasition
of the Dirac operator (this is in the spirit of recent works by Gattrinfjex. [5]

5. Conclusions

Even though at a very preliminary stage, we showed some results of alyadita compu-
tation of the Dirac operator spectrum by means of NSPT. Our results guaetitssupport the
picture of the repulsion among eigenvalues being responsible for thamgament of eigenvalues,
ultimately giving rise to Banks Casher.

Some developments of this work are expected to follow these preliminary results.

e We have to carefully assess the huge tails of higher order distributioreshi@nis that this
asks for some regulator in highly degenerate free field eigenspaces.

¢ We will move to computations in the background of differg(8) vacua.

e Having at hand full spectra could in principle enable the computation ofiatyasf quanti-
ties.
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