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1. Introduction

Obtaining precise physical results from lattice calcolasi requires a well controlled contin-
uum limit and, for many quantities, non-perturbative renalisation. ldeally the renormalisation
scheme should be not onhon-perturbativebut alsomass independerand preferablygauge in-
variant Schrodinger functional (SF) schemes [1, 2, 3] are knownlfdifthese properties. Addi-
tionally, to ease the burden of taking the continuum lir@ita) improvement is highly desirable.
However, to eliminate the many counterterms necessary applying the standar®(a) improve-
ment program with Wilson fermions, we would like to capitalion the automati®©(a) improve-
ment provided by maximally twisted mass fermions [4] (s€ddba review). Unfortunately, bulk
automaticO(a) improvement with Wilson fermions and the standard SF (s®Bhtary conditions
(BCs) are not compatibleD(a) improvement is only possible introducing a number of addi
bulk improvement counter-terms to the action and operatirsce there are extensive calculations
with maximally twisted mass fermions [6, 7] it would be cligatesirable to employ the SF scheme
while keeping automati©(a)-improvement.

A new formulation of the SF has been developed in Ref. [8],cwiwe will refer to as the
chirally rotated SF xSF), that implements a SF scheme while maintaining auten@(@) im-
provement for massless Wilson fermions. Th8F is related (in the continuum) to the sSF by
means of a non-singlet chiral transformation, i.e. theyeangivalent in the continuum limit. How-
ever, when using massless Wilson fermions as a lattice atu SF BCs are invariant under a
subgroup of the chiral symmetry transformations brokenHhsy \Wilson term (in contrast to sSF
BCs). As a resullfSF BCs are compatible with automa€@ga) improvement.

The three-dimensional boundaries of the SF lead to an ud@btd dimension four boundary
operator. Additionally, regulating th&SF with Wilson fermions induces the usual bulk mass
operator as well as a dimension three boundary operator.difhension four boundary operator
is irrelevant, and hence the corresponding coefficient easdbely fixed by perturbation theory in
order to eliminate the correspondiri@a) boundary contributions. The bulk operator is relevant
and is handled by the standard non-perturbative tuningeobtire quark mass, equivaleniy to
its critical value. The dimension three operator is alsevaht and can spoil not only the automatic
O(a) improvement but also the universality of the continuum timThis requires an additional
non-perturbative tuning of one more countertemmm, However, having tuned botk and z, all
operators are automaticaly(a) improved and no further counterterms are necessary.

Here we present the non-perturbative tuningcatndz for the xSF in the quenched approx-
imation. We demonstrate the feasibility of tuning both paeters simultaneously. In particular,
the inclusion of the bulk dimension five operator, with cepending counterterrg,, as used in
Ref. [9], is found to be unnecessary.

2. Boundary conditions

The xSF is related to the SSF by a non-singlet chiral transfonay = exp(—imst3/4)y,
wherey is the fermion doublet in thik = 2 standard formulatiory is the corresponding doublet
in the rotated basis are® is a Pauli matrix. This field transformation maps the sSF BGQke x SF
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BCs,

Qi X(X)[x=0=0 Q-X(X)[x=T =0 (2.1)
X(X)Q+|x=0=0 X(X)Q-|x=T =0,

whereT is the Euclidean time extent a@l. are projectors given by

QjE::—L (LLiyowr?).

2

Thus theQ+ are simply the chirally rotated projectors correspondinghte sSF projector®. =
1/2(1+ y). However, once the theory is regularised on the lattice, wetransure that the BCs
in (2.1) are in fact recovered in the continuum limit. Usimpitolding techniques, it was shown
that the BCs can be implemented at finite lattice spacing bgnple modification of the standard
Wilson-Dirac operatoDyy, near the time boundaries [10]. The resulting action is

)
s=a' 3 3 X0)(Zw+mo)x(X (2.2)

X0=0 X

and the modified Wilson-Dirac operator is given by

—U (x,0)P_x (x+a0) + (aK +iyT3P_)x (x) if x=0
aZwx(X) =< aDwx(x) if 0<x<T (2.3)
(aK +iysT3P, ) x (X) — U T(x— a0, 0)P, x (x— a0) if x=T

whereK is the time-diagonal contribution .

3. Boundary counterterms

To ensure the correct continuum limit, we must account fbredévant operators allowed by
the symmetries of the action above. This means dimensiancioless for the bulk action. There
is one such operatog,x, and the corresponding counterterm is the term proportitantie critical
guark massim, or equivalentlyk.. This is the standard operator that is present for all Wilson
actions due to the breaking of chiral symmetry by the Wilssnmt

Similarly, we must include all permitted boundary operatof dimension three or less. Again,
the one allowed operator gy [8], which gives rise to the following counterterm to thetiee
action,

0S = (z — 1)a° Z (XX Ixo=0+ XX lxo=T) -
X

Such an operator would be forbidden in the continuum actian,the reduced symmetries of
the Wilson action do not allow us to exclude this operator fum lattice. The presence ofS;
can then be understood as necessary to restore the symsriwtilen by the Wilson term in the
continuum limit. The fact that it is a relevant operator imeplthat we must compute the bare
coupling dependence af non-perturbatively, just as fax.
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Furthermore, we must examine those irrelevant operatarsiélad toO(a) contributions. In
the bulk, there is the dimension five Sheikholeslami-Wdhiem, but automati®©(a) improve-
ment eliminates the need for this operator. Yet, there desmin anO(a) contribution from the
boundary due to the irrelevant dimension four operator [9],

08y = (ds—1)a* S (XWDkX[xo=0+ XWDKX xo=T) -
X

Such a contribution is present in all SF formulations [3] aschot due to the particular lattice
action or BCs we have chosen. In fadi plays a role that is analogous to thecBunterterm in the
sSF [11]. Given thad&, is an irrelevant operatods can be computed in perturbation theory. For
the investigation presented here, we simply use the tregl@lue of 2.

4. Tuning conditions

The non-perturbative determination wfandz requires imposing conditions at finite lattice
spacing that ensure the restoration of all expected synmsatr the continuum limit: parity and
flavour symmetries in th& — basis. Moreover, these conditions should be imposed at eachdatti
spacing while fixing a suitable renormalised quantity. lis thiork, we keep the renormalised SF
coupling,g, fixed. This is equivalent to fixing the physical size of th&la All other dimensionful
quantities must scale with, so we choos& = L, evaluate all correlation functions & = T /2
and use periodic boundary conditions with= 0.

Before specifying the tuning conditions, we define the felltg boundary to bulk correlation
functions

oA (%) = —(A5(022) & (x0) = —(P*(x)22)
where the boundary operata®?, is defined for the, = 0 boundary by

22 =2 T 7(9)1551°Q:4 (P02,
vz

the bulk operator#\ (x) andP¥(x) are the axial current and pseudoscalar density inxtasis,
and the boundary fields fogp = 0 are defined as

{®)=Uo—-aX%0)X(Nh=a {(X) =XV (x0—a%0)x=a

To tunex to its critical value, we adopt the standard procedure ofdsiimg a vanishing PCAC

mass. To tune;, we require thesT1-0dd correlation functiom}® to vanish,
dlatt 11 T/2
MpcaC = %T(/é)) =0 ga_ =0 (T/2)=0. (4.1)

The second condition in particular is sensitive to the symniegbroken by the lattice action (2.2),
and both conditions together ensure that in the continuomt &ll broken symmetries are indeed
restored. Imposing different symmetry restoration candg would give rise to different values of
k andz that would differ amongst themselves by cutoff effects. ilt ae important to study the
sensitivity ofk andz to the particular definitions used in order to better undardtthe intrinsic
uncertainty in the determination of these counterterms.

IWe recall that in they— basis parity and flavour symmetries take a slightly differenm (see ref. [5] for a
discussion about the dependence of the symmetries on trsedokpted).
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L/a] B | Z(XSF) | ka(XSF) | K (sSF)
Tuning at a hadronic scalg, ~ 300 MeV
8 | 6.0219 | 1.8090(32) | 0.153530(24) | 0.153371 (10)
10 | 6.1628 | 1.7920(30) | 0.152134 (17) | 0.152012 (7)
12 | 6.2885 | 1.7664 (51) | 0.150815 (22) | 0.150752 (10)
16 | 6.4956 | 1.7212(83) | 0.148945 (25) | 0.148876 (13)
Tuning at an intermediate scaje,~ 1 GeV
8 | 7.0197 | 1.5467 (15) | 0.144501 (13) | 0.144454 (7)
12 | 7.3551 | 1.5126(23) | 0.143113(12) | 0.143113 (6)
16 | 7.6101 | 1.4942(37) | 0.142112(13) | 0.142107 (6)
Tuning at a perturbative scalg,~ 30 GeV
8 | 10.3000| 1.29730 (67)| 0.1354609 (54) 0.135457 (5)
12 | 10.6086| 1.2954 (11) | 0.1351758 (56) 0.135160 (4)
16 | 10.8910| 1.2858 (15) | 0.1348440 (61) 0.134849 (6)

Table 1: Tuning results at a hadronic, intermediate and perturbatoale. We give the critical valueg,
andkg,, calculated in this work for thg SF. For reference, we also gike, for the sSF [12, 13, 14].

5. Tuning results

To check the practicality of tuning both andz non-perturbatively for thegSF, we perform
the tuning at three values of the renormalisation sgale 1/L, corresponding to a hadronig)
fixed with L = 1.43@ ), an intermediategf = 2.4484) and a perturbativg{ = 0.9944) scale. The
results at these three points are summarised in Tab. 1. Webriefly explain the procedure we
used to perform the tuning, showing examples from our mdftdit point at the hadronic scale
and for the smallest latticé,/a = 8.

The values of3 used are given in Tab. 1 and are taken from Ref. [15]. The tuisiperformed
in several steps. First, we calculatgcac andga_ at four values of, and for each value &, we
use four values ok, thus giving 16 pairs ok andz. This allows us to determings_ as a function
of mpcac for each value ofy, as illustrated in Fig. 1. For each value »f we perform a linear
interpolation ofga_ in terms ofmpcac to the pointmpcac = 0. This determines the values gf
atmpcac = 0 for each of the four values @f, as shown in Fig. 2. We now interpolate these values
of ga— as a function ofx to the point of vanishing , thus giving us the critical valug .

Next we determine,,. Using the same 16 pairs gfandz, we calculatempcac as a function
of k for eachz. This is shown in Fig. 3. Note thapcac has a very mild dependence an so
the four curves at fixed are nearly indistinguishable. Interpolating«rto the point of vanishing
PCAC mass, we obtain the critical valueskoht eacle. The resulting values af as a function of
Z are shown in Fig. 4. We now interpolate these resultg to the previously determined value of
Z, thus determining the value at;.

A key observation of this work is the mild dependencevgtac On z, at least in the region
nearke andz. You can easily see this in Fig. 3. The consequence of thitea n Fig. 4:
the determination ok, also has a weak dependence #rand the errors of both are relatively
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independent. If this behaviour persists with dynamicatwaialtions, it could ease the numerical
effort necessary to perform the tuning, thus reducing thalmer of required simulations.

6. Conclusions

We have presented the results of the non-perturbative gurfir andz for the x SF at three
physical scales and for a range of lattice spacings. Thisodstrates that the tuning of these two
coefficients is indeed feasible, at least in the quenchedbajppation. Moreover, we observe that
the tuning ofz andk are nearly independent. Note that even with non-improveldaffifermions
in the bulk,k andz are the only parameters that must be tuned withingB€& setup in order to
guarantee bulk automati®(a) improvement, thus eliminating the need for the bulk coueter,
Csw, and for the many operator improvement coefficients necgasahe sSF.

Our next step is to perform an universality test of this folation as well as a demonstration
that automatidd(a) improvement holds. This can be done by reproducing a vagetuantities
already computed in the standard setup. A natural candidatéd be the computation of the step-
scaling function of the pseudoscalar renormalisationofa@p, which could be compared to the
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results of [15]. We recall that theSF and the sSF are equivalent in the continuum limit, theegefo
it is not necessary to recompute the entire evolution of araipr. The only quantity that must be
recomputed is the renormalisation factor at the most notugmtive scale.

We also plan to explore whether the valuexgfdetermined from the finite volume simulations
can be used in large volume, preserving the nice scalingvimiraobtained in Refs. [16, 17],
without the need for a large volume determinatiorkgf A lattice perturbation theory computation
of ds andz is also planned. The final goal is to perform dynamical sirtioihe.
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