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1. Introduction

Obtaining precise physical results from lattice calculations requires a well controlled contin-
uum limit and, for many quantities, non-perturbative renormalisation. Ideally the renormalisation
scheme should be not onlynon-perturbativebut alsomass independentand preferablygauge in-
variant. Schrödinger functional (SF) schemes [1, 2, 3] are known to fulfill these properties. Addi-
tionally, to ease the burden of taking the continuum limit,O(a) improvement is highly desirable.
However, to eliminate the many counterterms necessary whenapplying the standardO(a) improve-
ment program with Wilson fermions, we would like to capitalize on the automaticO(a) improve-
ment provided by maximally twisted mass fermions [4] (see [5] for a review). Unfortunately, bulk
automaticO(a) improvement with Wilson fermions and the standard SF (sSF) boundary conditions
(BCs) are not compatible.O(a) improvement is only possible introducing a number of additional
bulk improvement counter-terms to the action and operators. Since there are extensive calculations
with maximally twisted mass fermions [6, 7] it would be clearly desirable to employ the SF scheme
while keeping automaticO(a)-improvement.

A new formulation of the SF has been developed in Ref. [8], which we will refer to as the
chirally rotated SF (χSF), that implements a SF scheme while maintaining automatic O(a) im-
provement for massless Wilson fermions. TheχSF is related (in the continuum) to the sSF by
means of a non-singlet chiral transformation, i.e. they areequivalent in the continuum limit. How-
ever, when using massless Wilson fermions as a lattice regulator, χSF BCs are invariant under a
subgroup of the chiral symmetry transformations broken by the Wilson term (in contrast to sSF
BCs). As a resultχSF BCs are compatible with automaticO(a) improvement.

The three-dimensional boundaries of the SF lead to an unavoidable dimension four boundary
operator. Additionally, regulating theχSF with Wilson fermions induces the usual bulk mass
operator as well as a dimension three boundary operator. Thedimension four boundary operator
is irrelevant, and hence the corresponding coefficient can be safely fixed by perturbation theory in
order to eliminate the correspondingO(a) boundary contributions. The bulk operator is relevant
and is handled by the standard non-perturbative tuning of the bare quark mass, equivalentlyκ , to
its critical value. The dimension three operator is also relevant and can spoil not only the automatic
O(a) improvement but also the universality of the continuum limit. This requires an additional
non-perturbative tuning of one more counterterm,zf. However, having tuned bothκ andzf, all
operators are automaticallyO(a) improved and no further counterterms are necessary.

Here we present the non-perturbative tuning ofκ andzf for the χSF in the quenched approx-
imation. We demonstrate the feasibility of tuning both parameters simultaneously. In particular,
the inclusion of the bulk dimension five operator, with corresponding countertermcsw, as used in
Ref. [9], is found to be unnecessary.

2. Boundary conditions

TheχSF is related to the sSF by a non-singlet chiral transformation, χ = exp(−iπγ5τ3/4)ψ ,
whereψ is the fermion doublet in theNf = 2 standard formulation,χ is the corresponding doublet
in the rotated basis andτ3 is a Pauli matrix. This field transformation maps the sSF BCs to theχSF
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BCs,

Q+χ(x)|x0=0 = 0 Q−χ(x)|x0=T = 0 (2.1)

χ(x)Q+|x0=0 = 0 χ(x)Q−|x0=T = 0,

whereT is the Euclidean time extent andQ± are projectors given by

Q± =
1
2

(1± i γ0γ5τ3) .

Thus theQ± are simply the chirally rotated projectors corresponding to the sSF projectors,P± =

1/2(1± γ0). However, once the theory is regularised on the lattice, we must ensure that the BCs
in (2.1) are in fact recovered in the continuum limit. Using orbifolding techniques, it was shown
that the BCs can be implemented at finite lattice spacing by a simple modification of the standard
Wilson-Dirac operator,DW, near the time boundaries [10]. The resulting action is

S= a4
T

∑
x0=0

∑̃
x

χ(x)(DW +m0)χ(x) (2.2)

and the modified Wilson-Dirac operator is given by

aDWχ(x) =











−U(x,0)P−χ(x+a0̂)+ (aK+ iγ5τ3P−)χ(x) if x0 = 0
aDWχ(x) if 0 < x0 < T
(aK+ iγ5τ3P+)χ(x)−U†(x−a0̂,0)P+χ(x−a0̂) if x0 = T

(2.3)

whereK is the time-diagonal contribution toDW.

3. Boundary counterterms

To ensure the correct continuum limit, we must account for all relevant operators allowed by
the symmetries of the action above. This means dimension four or less for the bulk action. There
is one such operator,χχ , and the corresponding counterterm is the term proportional to the critical
quark mass,mcr, or equivalentlyκcr. This is the standard operator that is present for all Wilson
actions due to the breaking of chiral symmetry by the Wilson term.

Similarly, we must include all permitted boundary operators of dimension three or less. Again,
the one allowed operator isχχ [8], which gives rise to the following counterterm to the lattice
action,

δS3 = (zf −1)a3∑
~x

(χχ |x0=0+ χχ |x0=T) .

Such an operator would be forbidden in the continuum action,but the reduced symmetries of
the Wilson action do not allow us to exclude this operator on the lattice. The presence ofδS3

can then be understood as necessary to restore the symmetries broken by the Wilson term in the
continuum limit. The fact that it is a relevant operator implies that we must compute the bare
coupling dependence ofzf non-perturbatively, just as forκ .
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Furthermore, we must examine those irrelevant operators that lead toO(a) contributions. In
the bulk, there is the dimension five Sheikholeslami-Wohlert term, but automaticO(a) improve-
ment eliminates the need for this operator. Yet, there does remain anO(a) contribution from the
boundary due to the irrelevant dimension four operator [9],

δS4 = (ds−1)a4∑
~x

(χγkDkχ |x0=0+ χγkDkχ |x0=T) .

Such a contribution is present in all SF formulations [3] andis not due to the particular lattice
action or BCs we have chosen. In fact,ds plays a role that is analogous to the ˜ct counterterm in the
sSF [11]. Given thatδS4 is an irrelevant operator,ds can be computed in perturbation theory. For
the investigation presented here, we simply use the tree-level value of 1/2.

4. Tuning conditions

The non-perturbative determination ofκ andzf requires imposing conditions at finite lattice
spacing that ensure the restoration of all expected symmetries in the continuum limit: parity and
flavour symmetries in theχ− basis1. Moreover, these conditions should be imposed at each lattice
spacing while fixing a suitable renormalised quantity. In this work, we keep the renormalised SF
coupling,g, fixed. This is equivalent to fixing the physical size of the box, L. All other dimensionful
quantities must scale withL, so we chooseT = L, evaluate all correlation functions atx0 = T/2
and use periodic boundary conditions withθ = 0.

Before specifying the tuning conditions, we define the following boundary to bulk correlation
functions

gab
A±

(x0) = −〈Aa
0(x)Q

b
±〉 gab

P±
(x0) = −〈Pa(x)Qb

±〉

where the boundary operator,Qa
±, is defined for thex0 = 0 boundary by

Q
a
± = a6∑

~y,~z

ζ (~y)γ5
1
2

τaQ±ζ (~z)ei~p(~y−~z) ,

the bulk operatorsAa
µ(x) andPa(x) are the axial current and pseudoscalar density in theχ-basis,

and the boundary fields forx0 = 0 are defined as

ζ (~x) = U(x0−a,~x;0)χ(x)|x0=a ζ (~x) = χ(x)U†(x0−a,~x;0)|x0=a.

To tuneκ to its critical value, we adopt the standard procedure of imposing a vanishing PCAC
mass. To tunezf , we require theγ5τ1-odd correlation functiong11

A−
to vanish,

mPCAC≡
∂ latt

0 g11
A−

(T/2)

2g11
P−

(T/2)
= 0 gA− ≡ g11

A−
(T/2) = 0. (4.1)

The second condition in particular is sensitive to the symmetries broken by the lattice action (2.2),
and both conditions together ensure that in the continuum limit all broken symmetries are indeed
restored. Imposing different symmetry restoration conditions would give rise to different values of
κ andzf that would differ amongst themselves by cutoff effects. It will be important to study the
sensitivity ofκ andzf to the particular definitions used in order to better understand the intrinsic
uncertainty in the determination of these counterterms.

1We recall that in theχ− basis parity and flavour symmetries take a slightly different form (see ref. [5] for a
discussion about the dependence of the symmetries on the basis adopted).
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L/a β z∗f (χSF) κcr (χSF) κcr (sSF)

Tuning at a hadronic scale,µ ∼ 300 MeV

8 6.0219 1.8090 (32) 0.153530 (24) 0.153371 (10)
10 6.1628 1.7920 (30) 0.152134 (17) 0.152012 (7)
12 6.2885 1.7664 (51) 0.150815 (22) 0.150752 (10)
16 6.4956 1.7212 (83) 0.148945 (25) 0.148876 (13)

Tuning at an intermediate scale,µ ∼ 1 GeV

8 7.0197 1.5467 (15) 0.144501 (13) 0.144454 (7)
12 7.3551 1.5126 (23) 0.143113 (12) 0.143113 (6)
16 7.6101 1.4942 (37) 0.142112 (13) 0.142107 (6)

Tuning at a perturbative scale,µ ∼ 30 GeV

8 10.3000 1.29730 (67) 0.1354609 (54) 0.135457 (5)
12 10.6086 1.2954 (11) 0.1351758 (56) 0.135160 (4)
16 10.8910 1.2858 (15) 0.1348440 (61) 0.134849 (6)

Table 1: Tuning results at a hadronic, intermediate and perturbative scale. We give the critical values,z∗f
andκcr, calculated in this work for theχSF. For reference, we also giveκcr for the sSF [12, 13, 14].

5. Tuning results

To check the practicality of tuning bothκ andzf non-perturbatively for theχSF, we perform
the tuning at three values of the renormalisation scaleµ = 1/L, corresponding to a hadronic (g2

fixed withL = 1.436r0), an intermediate (g2 = 2.4484) and a perturbative (g2 = 0.9944) scale. The
results at these three points are summarised in Tab. 1. We nowbriefly explain the procedure we
used to perform the tuning, showing examples from our most difficult point at the hadronic scale
and for the smallest lattice,L/a = 8.

The values ofβ used are given in Tab. 1 and are taken from Ref. [15]. The tuning is performed
in several steps. First, we calculatemPCAC andgA− at four values ofzf , and for each value ofzf , we
use four values ofκ , thus giving 16 pairs ofκ andzf . This allows us to determinegA− as a function
of mPCAC for each value ofzf , as illustrated in Fig. 1. For each value ofzf, we perform a linear
interpolation ofgA− in terms ofmPCAC to the pointmPCAC = 0. This determines the values ofgA−

at mPCAC = 0 for each of the four values ofzf , as shown in Fig. 2. We now interpolate these values
of gA− as a function ofzf to the point of vanishinggA− , thus giving us the critical valuez∗f .

Next we determineκcr. Using the same 16 pairs ofκ andzf, we calculatemPCAC as a function
of κ for eachzf . This is shown in Fig. 3. Note thatmPCAC has a very mild dependence onzf , so
the four curves at fixedzf are nearly indistinguishable. Interpolating inκ to the point of vanishing
PCAC mass, we obtain the critical values ofκ at eachzf . The resulting values ofκ as a function of
zf are shown in Fig. 4. We now interpolate these results inzf to the previously determined value of
z∗f , thus determining the value ofκcr.

A key observation of this work is the mild dependence ofmPCAC on zf , at least in the region
nearκcr and z∗f . You can easily see this in Fig. 3. The consequence of this is clear in Fig. 4:
the determination ofκcr also has a weak dependence onz∗f and the errors of both are relatively
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Figure 1: Plot ofgA− versusmPCAC. Figure 2: Plot ofgA− versuszf .

Figure 3: Plot ofmPCAC versusκ . Figure 4: Plot ofκcr versuszf .

independent. If this behaviour persists with dynamical calculations, it could ease the numerical
effort necessary to perform the tuning, thus reducing the number of required simulations.

6. Conclusions

We have presented the results of the non-perturbative tuning of κ andzf for the χSF at three
physical scales and for a range of lattice spacings. This demonstrates that the tuning of these two
coefficients is indeed feasible, at least in the quenched approximation. Moreover, we observe that
the tuning ofzf andκ are nearly independent. Note that even with non-improved Wilson fermions
in the bulk,κ andzf are the only parameters that must be tuned within theχSF setup in order to
guarantee bulk automaticO(a) improvement, thus eliminating the need for the bulk counterterm,
csw, and for the many operator improvement coefficients necessary in the sSF.

Our next step is to perform an universality test of this formulation as well as a demonstration
that automaticO(a) improvement holds. This can be done by reproducing a varietyof quantities
already computed in the standard setup. A natural candidatewould be the computation of the step-
scaling function of the pseudoscalar renormalisation factor, ZP, which could be compared to the
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results of [15]. We recall that theχSF and the sSF are equivalent in the continuum limit, therefore,
it is not necessary to recompute the entire evolution of an operator. The only quantity that must be
recomputed is the renormalisation factor at the most non-perturbative scale.

We also plan to explore whether the value ofκcr determined from the finite volume simulations
can be used in large volume, preserving the nice scaling behaviour obtained in Refs. [16, 17],
without the need for a large volume determination ofκcr. A lattice perturbation theory computation
of ds andzf is also planned. The final goal is to perform dynamical simulations.
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