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1. Introduction and motivations

The strange-quark content of the nucleon is difficult to meagxperimentally but is a quan-
tity of wide interest. In particular, the interaction crasection between some proposed dark mat-
ter candidates (for instance, neutralinos) and ordinarftenanay have a large contribution from
interactions with sea strange quarks in the nucleon. Speliifi the interest is in the quantity
(N [ d®xsYN) — (0| | d*xS90): the connected part of the strange quark condensate, atbegr
over the volume of the nucleon. Knowledge of this matrix edefris crucial to design experimen-
tal schemes for dark matter detection and to interpret thsinlts. If the matrix element is known, it
is possible to determine the constraints on the paramedeesyf dark matter candidates accessible
to a given experiment. [2, 3]

As the quantity in question cannot be measured experimgotatalculated perturbatively, we
must turn to lattice QCD to compute it. Previous lattice akdtions to answer this question have
been done with quenched simulations[4, 5], with a 2-flavarwssng Wilson or overlap quarks|6,
7, 8], and 2+1 flavor stout quarks[9]. Recently this quaniigs extracted from baryon mass fits
to 2+1 flavor simulations [10]. The results from these stadiien have large uncertainties, and
some conclude thglN|s§N) may be significantly larger than its natural size of unity.

We outline a method for calculating this quantity by evahgtdisconnected quark-line dia-
grams, and present the results of applying this method tMth€ Collaboration’s library of gauge
configurations using 2+1 flavors of Asgtad-improved stagdejuarks. An additional very long en-
semble of 4566 lattices from the UKQCD Collaboration w#hk= 6.75, m = 0.06a, ms = 0.30a,
a~ 0.125 fm using the same action is included, allowing a measeméwf (N|S§N) using 25788
gauge configurations using a full 2+1 flavor sea [1].

The method outlined here can be used for light quarks as amd for hadrons other than the
nucleon. While measurements of their quark condensatesoar@s immediately in demand, they
may provide useful information about chiral perturbatitvedry low-energy constants, and may
lead to further progress in understanding the structur@®fQCD sea within hadrons.

2. The MILC lattice generation program

The MILC collaboration is engaged in an extensive projeciQ&D simulations using a
Symanzik-improved gauge action and the Asqtad-improvadgstred-quark action with a 2+1
flavor sea. This project consists of a number of runs at nontétiice spacings o= .12 fm,
a= .09 fm, anda = .06 fm, along with other coarser runs not considered here.ailBedf the
action, the ensembles of gauge configurations, and the ohethextracting nucleon correlators
can be found in Ref. [11]. An additional very long ensembl&%66 lattices from UKQCD with
B =6.75,m = 0.06a, ms = 0.30a using the same action is included in the analysis.

3. The method

In a chiral fermion formulation, the matrix element in questis equal to‘;'v'ﬁ“ by the Feynman-
Hellman theorem. We emphasize that the derivative shouldhen holding all other parameters
in the action fixed. A sizeable value f(%% does not imply a large dependence of giegsical
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nucleon mass oms. Changing the value afs changes the value @il physical quantities by a
similar amount, and this change is interpreted as an ovesghling of the lattice rather than a shift
in the physical values. Likewise, a large result does notyrtige presence of margsloops in the
nucleon. Rather, it comes from the suppression of the vagsgondensate near the nucleon.

One needs large-scale simulations with a true 2+1 flavorcdaterming(N|ss|N) with rea-
sonable accuracy. Previous methods used to determineudhigity require particular choices for
the lattice parameters, namely ensembles with diffengnbut the samg3. On the other hand,
in a general program of lattice QCD simulations such as M#, 6% is typically held fixed at its
physical value whilg3 is changed with theny’s to keep the physical lattice spacing fixed. Thus,
computing(N|sS|N) using the standard method requires special-purpose diondawvhich must
be limited in scope due to economics. We have developed aoluhaatlhdetermine‘f?'\"ﬁN from any
singlelattice ensemble, allowing its use on the MILC lattice comfégions. The many ensembles
are simply used to conduct an extrapolation to the physigiit@nd to improve statistics.

The nucleon masBly is obtained by a fit to the nucleon correlatft) and as such can be
thought of as a complicated function of the correlator dedént timesMy = f(C(t1),C(t2),C(t3)...).
The crucial idea is that one can use the chain rule for diffigméon to rewrite the derivative:

OMy  OMy dC(t1)+ My dC(t2)+ dMy 0C(t3) (3.1)
omg JdC(t)) dms  IC(tz) dms — IC(t3) Im... '

The partial derivativef%"(t“i‘) can be evaluated most simply by applying a small perturbatio

to the nucleon correlator and examining the change in theditlt. The other partial derivative
%P—é? can be evaluated by an application of the Feynman-Hellmaorém in reverse to relate it to
(P(ti)s9 — (P(t)) (9.

Here we take advantage of the fact that, whenever the MIL@ geaherates or reads a lattice
for analysis, it prints a stochastic estimator fod*xSs The number of estimators used in this
work, 6-16 per lattice, is sufficient for their fluctuation ¢ontribute significantly to the statistical
error. These values can be used to comg@te) [ d*xss) — (C(t)) ([ d*xSs) by simple evaluation
with no additional use of computer time. By doing this forleacised in the fit to determinigly,

it is possible to evaluate the chain rule sum and deten%%e

This double use of the Feynman-Hellman theorem to accessutiear strangeness might
seem redundant: as we have the valugs®f why not simply evaluate the matrix element|ss|N)
directly? The problem is that the lattice operator used ¢ater and annihilate the nucleon overlaps
with many other three-quark states; the nucleon is simmyldlwest-lying three-quark state. Fur-
thermore, the normalization of the nucleon state creatisdity is unknown. Using this operator
along with the(ss data to evaluatéN|ss|N) directly would give the sea quark content of some
superposition of states of unknown normalizationt of the nucleon itself. The fitting procedure
used to extract the nucleon mass provides a way of extrairtfognation about the nucleon alone,
and the double use of the Feynman-Hellman theorem provides/ado relate it to{N|sS|N).

Statistical errors on the result fé}% were calculated using the jackknife method with blocks
of size 10; this is large enough to take into account autetaions in the lattice data. Use of larger
jackknife blocks produces an insignificant change in the efzhe errors.
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4. Choice of fit range

Choosing a lower minimum distance in the nucleon mass fitsresult in lower statistical
error but may introduce systematic biases from pollutiorekgited states. The minimum fit dis-
tance required to avoid significant systematic errafNinss|N) can be smaller than the one used for
precision measurements lty. When extractindVly, any pollution of the correlator by the excited
states in the fit range will cause an incorrectly high valuetlie mass. However, the lowest-lying
excited state is the delta. As we expect the effect of thedeltthe strange quark condensate to be
broadly similar to that of the nucleon, a small amount ofa@llution will not create substantial
systematic error.

The minimum distances chosen should be consistent in @iysiits between lattice spacings.
The minimum distance chosen should also be in a region whergessult at successive minimum
distances does not differ greatly. Both looking at the tesnsemble-by-ensemble and looking at
fits to all ensembles in the same nominal lattice spacing estdgipe use ofyin = 0.6 fm. This
choice is also suggested by the signal-to-noise rati S see Figure 1. In lattice units, this
givestmin = 5a (a= 0.13fm), tmin = 7a (a = 0.09fm), andt,i, = 10a (a = 0.06fm). By examining
the dependence 8}% ontmin, We conservatively estimate the systematic error due titezkstate
pollution as 10%. However, the nucleon mass itself can bepobed with much lower statistical
error at highetin; mass fits at these higher minimum distances differ frometait,, = 0.6 fm
by only 1% to 5%. Thus 10% is potentially an overly-pessimisstimate.

The result is quite insensitive to the maximum distance @isethe fits; this is expected, since
the signal-to-noise ratio of the correlator is very poorr¢he

The values off,—'\rfg obtained on each ensemble using these minimum distanceabatated
here and shown in the first panel of Figure 2. In the table, blo¢hbare value (in the lattice
regularization), and the value converted to th§2 GeV) regularization and shifted to the correct
strange quark mass (see below) are given.

am ams | a(fm) | Nias | (NssN (bare) [ (MssN (ad))
6.81 0.30 0.50 | 0.117] 552 0.676(190) 0.620(147)
6.79 0.20 0.50 | 0.118 | 2067 0.702?8% 0.639(176(2
6.76 0.10 0.50 | 0.119 | 2278| 0.779(13 0.696(10
6.76 0.07 0.50 | 0.118 | 2098 | 0.867(214 0.766(166
6.76 0.05 0.50 | 0.117 | 2033| 0.753(299 0.679(230
6.75 0.06 0.30 | 0.117 | 4566 | 0.884(171 0.645(132
7.08 | 0.0031 0.031| 0.084 | 1013| 1.232(339 0.955(249
7.085| 0.00465 0.031| 0.084 | 599 0.500(369 0.417(271
7.09 | 0.0062 0.031| 0.084 | 1943| 0.705(158 0.568(116
7.10 | 0.0093 0.031| 0.084 | 1137 | 1.093(183 0.853(134
7.11 | 0.0124 0.031| 0.084 | 1993| 0.936(109 0.739&80&
7.18 | 0.0310 0.031| 0.081 | 496 0.530(161 0.4492 1 3
7.10 | 0.0062 0.0186 0.082 | 948 | 0.776(218 0.500(159
7.46 | 0.0018 0.018| 0.059 | 823 0.556(366 0.375(255
7.465| 0.0025 0.018| 0.059 | 798 | 0.848(494 0.579(345
7.47 | 0.0036 0.018| 0.058 | 658 0.561(268 0.379(187
7.475| 0.0054 0.018| 0.059 | 616 | 0.813(443 0.554(309
7.48 | 0.0072 0.018| 0.059 | 620 1.352(249 0.929(160
7.46 | 0.0036 0.0108 0.058 | 550 0.643(438 0.328(305

5. Analysis

5.1 Renormalization

Since in the continuum extrapolation it is necessary to ammpguantities measured at different
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Figure 1: The nucleon correlator and the derivative of this correlaitith respect tans for the ensemble with
am = 0.0093 andam; = 0.031 (first panel). For the derivative, the squares are pewhisre the derivative

is negative, and crosses are points where it is positive.vehtical lines show the range used in fitting the
correlator. The second panel sho@% for three ensembles with~ 0.9fm as a function of the minimum
distance used in the fitting, and the third panel shows thedfittucleon mass itself verstygn. The error
bars labelled “10%” in the second and third panels show treedd the ten percent systematic error estimate
from excited state contamination.
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Figure 2: ‘f;lm’: evaluated on the MILC ensembles. The first panel shows thee*lrasults; the second

panel shows the results converted to th&2 GeV) renormalization and adjusted to the physical strange
guark mass. The dotted line shows the chiral and continuynmétblack point atn = .005 shows this fit
evaluated at the physical point.

lattice spacings and thus different regularization schentés necessary to convert all of the data
to a common renormalization scheme sir%% is a renormalization dependent quantity. Since the
final result will be presented in thdS renormalization scheme at a scale of 2 GeV so it will be
most useful to the broader physics community, it is prefieréd begin the analysis by converting
all values to this renormalization scale. The Z-factorstfios conversion are known [12].

5.2 Strange quark mass dependence

Since the value oing in lattice units is not known prior to a lattice run, all of teesembles
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were run at strange quark masses different than the physitgl on some ensembles this error
is large (20%). It is thus necessary to determine the depmedef"m“‘ on m (that is, 2 omg ™) to
perform an extrapolation to the physical.

As MILC has run one or two ensembles at each nominal lattieeisg withmg set to 60% of
the guess at the physical value, it should be possible tmrd'ete";—;%“ by examining%% on both
these ensembles and those with the heavier strange quadvgevidr, since these “light strange”
ensembles are short, better results for this second deswvedn be obtained by a different method.

On many ensembles, the light quark is quite heavy; in somescéatsis actually closer to the
physical value ofng than the lattice heavy quark. Thus the behavior of the “ligiark condensate
on these ensembles is similar to that of a strange quark osatkewith a lower strange quark mass.

These ensembles with a heavier light quark allow for the mressent of the behavior of
a “heavy qzuark condensate” at two different quark masses,aflow us to estimate the second

92My OMn  OMy

derivative % = (i — G ) /(ms—m). SinceZt and F are measured on the same lattices,

their values are correlated, so the error% ‘7'\"“ (determlned by jackknife) is reduced.

By examining five ensembles with a large number of configonatiand relatively heavy light
quarks, it is possible to determir?ér':"?“ = —2.2 by a weighted average of its value on each, esti-
mated as above. This value is then used to extrapolate etecpalat toms phys The second panel
of Figure 2 shows the data convertedM&2GeV) and adjusted to the corregts.

5.3 Light quark mass dependence and continuum extrapolatio

Similarly, the value ofm may depend omy, and we are most interested in evaluating it at
the physical light quark mass. In this case the data set icsntesults fora My at many different
values ofm;, so it is possible to determine the dependencenpwith a S|mple fit. Examination
of the xPT form for ‘9'\"“ reveals a constant plus linear fitin is good enough; ngPT terms at
higher-order are reIevant at the level of statistical aacyprovided by the present data [13].

It is also necessary to extrapolate to the continuum. In thgt#d fermion formulation, the
leading-order errors in the action are proportionalafo Thus, the leading-order effect
will likewise be proportional ta?; this effect can be determined by adding such a term to the fit
form. However, such a term will be poorly constrained, siti@ebetter statistics in our dataset are
from thea = .12 fm ensembles, and since the effect from lattice spacisgal. Other hadronic
guantities calculated using the MILC Asqtad data show rbughl0% effect between the coarse
lattices and the continuum, so we use a Bayesian prior witkraral value of 0 and a width
corresponding to a 10% effect to constrain the lattice sjgpdependent term in the fit.

As both the light quark mass dependence and the latticergpdependence will be computed
in the same fit, the proper fit form %\FAFTN = A+Bm 4 C&, with a Bayesian constraint on C.

6. Result and error budget

Evaluating the fit above at the physical valuemfand in the continuum, we fin%""ﬁN =
0.69+ 0.07statistical- We estimate the systematic error due to excited statesmrésthe nucleon
correlator, as discussed above, at 10%. The extrapoladitdretphysical light quark mass involves
higher order terms iy PT which were not considered here. To estimate the size ®&ffect, we
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note that if the nucleon mass itself is fit to a constant-fihear form over the range considered
here, the result is seven percent off from the result obthimeen two more orders im; are added
to the fit. We thus estimate the effect of higher order termgRT as 7%. In one case where
a spatial volume larger than the one used here has been minutteon mass computed on the
larger volume differs by 1%. Since the effect on the stranggrkjcondensate is potentially more
sensitive to finite volume effects, we estimate the systienaator due to finite volume effects as
3%. Finally, Ref. [12] quotes an error iy, as 4%. If these errors are combined in quadrature we
thus estimate the total systematic error as 0.09.
The renormalization-invariant quantityg%lm': is also commonly quoted. Using a similar fit,
we calculatems%lng = 59(6)(8) MeV. This quantity does not include uncertainty Zp, as this
cancels, but includes a lattice systematics error of nahdysame size, coming from the 2% un-
certainty in the lattice scale and the uncertainty in thiidatstrange quark mass.
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