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Chiral symmetry breaking in nearly conformal gauge theories

1. Introduction

Our goal in this work to identify chiral symmetry breaking (χSB) below the conformal win-
dow of strongly interacting gauge theories requires the application and testing of several methods
in finite volumes. These include the analysis of the Goldstone spectrum in the p-regime and the
spectrum of the fermion Dirac operator with eigenvalue distributions of Random Matrix Theory
(RMT) in the ε-regime, within the framework of chiral perturbation theory (χPT). Some critical
consistency checks from the theoretical understanding of the SU(N f ) rotator spectrum of the δ -
regime will be also discussed. We report new results with N f = 4,8,9,12 flavors with χSB below
the conformal window for fermions in the fundamental representation of the SU(3) color gauge
group. As N f is increased, chiral condensate enhancement is observed when the electroweak sym-
metry breaking scale F is held fixed in technicolor language. We also discuss the theory inside the
conformal window. The importance of understanding finite volume, zero momentum gauge field
dynamics inside the conformal window is pointed out and illustrated at N f = 16. Much of this work
is an extension of our pre-conference publication [1] where we did not report our N f = 12 results.
In a forthcoming publication [2] more details will be provided on the analysis and results presented
here. Our work on the running coupling is presented separately [3].

It is an intriguing possibility that new physics beyond the Standard Model might take the
form of some new strongly-interacting gauge theory building on the original technicolor idea [4,
5, 6]. This approach has lately been revived by new explorations of the multi-dimensional theory
space of nearly conformal gauge theories [7, 8, 9, 10]. Model building of a strongly interacting
electroweak sector requires the knowledge of the phase diagram of nearly conformal gauge theories
as the number of colors Nc, number of fermion flavors N f , and the fermion representation R of the
technicolor group are varied in theory space. For fixed Nc and R the theory is in the chirally broken
phase for low N f , and asymptotic freedom is maintained with a negative β function. On the other
hand, if N f is large enough, the β function is positive for all couplings, and the theory is trivial.
There is some range of N f for which the β function might have a non-trivial zero, an infrared
fixed point, where the theory is in fact conformal [13, 14]. This method has been refined by
estimating the critical value of N f , above which spontaneous chiral symmetry breaking no longer
occurs [15, 16, 17].

Interesting models require the theory to be very close to, but below, the conformal window,
with a running coupling which is almost constant over a large energy range [18, 19, 20, 21, 22, 23].
The nonperturbative knowledge of the critical Ncrit

f separating the two phases is essential and this
has generated much interest and many new lattice studies [1, 24, 25, 26, 27, 28, 29, 30, 31, 33,
32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. To
provide theoretical framework for the analysis of simulation results, we review first a series of tests
expected to hold in the setting of χPT in finite volume and in the infinite volume limit.

2. Chiral symmetry breaking below the conformal window

We will identify in lattice simulations the chirally broken phases with N f = 4,8,9,12 flavors
of staggered fermions in the fundamental SU(3) color representation using finite volume analysis.
We deploy staggered fermions with exponential (stout) smearing [57] in the lattice action to reduce
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Chiral symmetry breaking in nearly conformal gauge theories

well-known cutoff effects with taste breaking in the Goldstone spectrum [58]. The presence of taste
breaking requires a brief explanation of how we apply staggered χPT in our analysis. The important
work of Lee, Sharpe, Aubin and Bernard [59, 60, 61] is closely followed in the discussion.

2.1 Staggered chiral perturbation theory

Starting with N f = 4 [59], the spontaneous breakdown of SU(4)L× SU(4)R to vector SU(4)
gives rise to 15 Goldstone and pseudo-Goldstone modes, described by fields φi that can be orga-
nized into an SU(4) matrix

Σ(x) = exp
(

i
φ√
2F

)
, φ =

15

∑
a=1

φaTa . (2.1)

F is the Goldstone decay constant in the chiral limit and the normalization Ta =
{

ξµ , iξµ5, iξµν ,ξ5
}

is used for the flavor generators. The leading-order chiral Lagrangian is given by

L
(4)
χ =

F2

4
Tr(∂µΣ∂µΣ

†)− 1
2

Bmq F2Tr(Σ+Σ
†) , (2.2)

with the fundamental parameters F and B measured on the technicolor scale ΛTC which replaced
ΛQCD in the new theory. Expanding the chiral Lagrangian in powers of φ one finds 15 degenerate
Goldstone pions with masses given by

M2
π = 2Bmq [1+O(mq/ΛTC)] . (2.3)

The leading-order term is the tree-level result while the corrections come from loop diagrams and
from higher-order terms in the chiral Lagrangian. The addition of a2L

(6)
χ breaks chiral symmetry

and lifts the degeneracy of the Goldstone pions. Adding correction terms to Eq. (2.3) yields

M2
π =C(Ta) ·a2

Λ
4
TC +2Bmq

[
1+O(mq/ΛTC)+O(a2

Λ
2
TC)
]

(2.4)

where the representation dependent C(Ta) is a constant of order unity. Contributions proportional
to a2 are due to L

(6)
χ and lead to massive pseudo-Goldstone pions even in the mq→ 0 chiral limit,

except for the Goldstone pion with flavor ξ5 which remains massless because the U(1)A symmetry
is protected.

Lee and Sharpe observe that the part of L
(6)
χ without derivatives, defining the potential V

(6)
χ ,

is invariant under flavor SO(4) transformations and gives rise to the a2 term in M2
π . Terms in

L
(6)
χ involving derivatives break SO(4) further down to the lattice symmetry group and give rise

to non-leading terms proportional to a2m and a4. The taste breaking potential is given by

−V
(6)

χ = C1Tr(ξ5Σξ5Σ
†)+ C2

1
2
[
Tr(Σ2)−Tr(ξ5Σξ5Σ)+h.c.

]
+ C3

1
2 ∑

ν

[Tr(ξνΣξνΣ)+h.c.]+ C4
1
2 ∑

ν

[Tr(ξν5Σξ5νΣ)+h.c.]

+ C5
1
2 ∑

ν

[
Tr(ξνΣξνΣ

†)−Tr(ξν5Σξ5νΣ
†)
]
+ C6 ∑

µ<ν

Tr(ξµνΣξνµΣ
†) . (2.5)

The six unknown coefficients Ci are all of size Λ6
TC.
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Chiral symmetry breaking in nearly conformal gauge theories

In the continuum, the Goldstone pions form a 15-plet of flavor SU(4) and are degenerate. On
the lattice, states are classified by the symmetries of the transfer matrix, and the pseudo-Goldstone
pions fall into 7 irreducible representations: four 3-dimensional representations with flavors ξi, ξi5,
ξi j and ξi4, and three 1-dimensional representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pseudo-Goldstone masses are given by

Mπ(Ta)
2 = 2Bmq +a2

∆(Ta)+O(a2mq)+O(a4) , (2.6)

with ∆(Ta)∼ Λ4
TC arising from V

(6)
χ . Since V

(6)
χ respects flavor SO(4), the 15 Goldstone particles

fall into SO(4) representations:

∆(ξ5) = 0, ∆(ξµ) =
8

F2 (C1 +C2 +C3 +3C4 +C5 +3C6),

∆(ξµ5) =
8

F2 (C1 +C2 +3C3 +C4−C5 +3C6), ∆(ξµν) =
8

F2 (2C3 +2C4 +4C6). (2.7)

In the chiral limit at finite lattice spacing, the lattice irreducible representations with flavors ξi and
ξ4 are degenerate, those with flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degenerate
as well. No predictions can be made for the ordering, splittings, or even the signs of the mass
shifts. Our simulations indicate that they are all positive with the exponentially smeared staggered
action we use, making the existence of an Aoki phase [59] unlikely. The method of [59] has
been generalized to the N f > 4 case [60, 61] which we adopted in our calculations with help from
Bernard and Sharpe. The procedure cannot be reviewed here but it will be used in the interpretation
of our N f = 8 simulations.

2.2 Finite volume analysis in the p-regime

Three different regimes can be selected in simulations to identify the chirally broken phase
from finite volume spectra and correlators. For a lattice size L3

s ×Lt in euclidean space and in the
limit Lt � Ls, the conditions FπLs > 1 and MπLs > 1 select the the p-regime, in analogy with low
momentum counting [62, 63].

For arbitrary N f , in the continuum and in infinite volume, the one-loop chiral corrections to
Mπ and Fπ of the degenerate Goldstone pions are given by

M2
π = M2

[
1− M2

8π2N f F2 ln
(

Λ3

M

)]
, (2.8)

Fπ = F
[

1+
N f M2

16π2F2 ln
(

Λ4

M

)]
, (2.9)

where M2 = 2B ·mq and F,B,Λ3,Λ4 are four fundamental parameters of the chiral Lagrangian, and
the small quark mass mq explicitly breaks the symmetry [64]. The chiral parameters F,B appear
in the leading part of the Lagrangian in Eq. (2.2), while Λ3,Λ4 enter in next order. There is the
well-known GMOR relation Σcond = BF2 in the mq → 0 limit for the chiral condensate per unit
flavor [65]. It is important to note that the one-loop correction to the pion coupling constant Fπ is
enhanced by a factor N2

f compared to M2
π . The chiral expansion for large N f will break down for Fπ

much faster for a given Mπ/Fπ ratio. The NNLO terms have been recently calculated [66] showing
potentially dangerous N2

f corrections to Eqs. (2.8,2.9).
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Chiral symmetry breaking in nearly conformal gauge theories

The finite volume corrections to Mπ and Fπ are given in the p-regime by

Mπ(Ls,η) = Mπ

[
1+

1
2N f

M2

16π2F2 · g̃1(λ ,η)

]
, (2.10)

Fπ(Ls,η) = Fπ

[
1−

N f

2
M2

16π2F2 · g̃1(λ ,η)

]
, (2.11)

where g̃1(λ ,η) describes the finite volume corrections with λ = M ·Ls and aspect ratio η = Lt/Ls.
The form of g̃1(λ ,η) is a complicated infinite sum which contains Bessel functions and requires
numerical evaluation [63]. Eqs. (2.8-2.11) provide the foundation of the p-regime fits in our simu-
lations.

chiral p-regime
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Figure 1: Schematic plot of the regions in which the three low energy chiral expansions are valid. The
vertical axis shows the finite temperature scale (euclidean time in the path integral) which probes the rotator
dynamics of the δ -regime and the ε-regime. The first two low lying rotator levels are also shown on the
vertical axis for the simple case of N f = 2. The fourfold degenerate lowest rotator excitation at mq = 0
will split into an isotriplet state (lowest energy level), which evolves into the p-regime pion as mq increases,
and into an isosinglet state representing a multi-pion state in the p-regime. Higher rotator excitations have
similar interpretations.

2.3 δ -regime and ε-regime

At fixed Ls and in cylindrical geometry Lt/Ls � 1, a crossover occurs from the p-regime to
the δ -regime when mq→ 0, as shown in Fig. 1. The dynamics is dominated by the rotator states
of the chiral condensate in this limit [67] which is characterized by the conditions FLs > 1 and
MLs � 1. The densely spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s , and at
mq = 0 the chiral symmetry is apparently restored. However, the rotator spectrum, even at mq = 0
in the finite volume, will signal that the infinite system is in the chirally broken phase for the
particular parameter set of the Lagrangian. This is often misunderstood in the interpretation of
lattice simulations. Measuring finite energy levels with pion quantum numbers at fixed Ls in the
mq→ 0 limit is not a signal for chiral symmetry restoration of the infinite system [41].
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Figure 2: The crossover from the p-regime to the δ -regime is shown for the π and πi5 states at N f = 4.

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the system will be driven into the
ε-regime which can be viewed as the high temperature limit of the δ -regime quantum rotator.
Although the δ -regime and ε-regime have an overlapping region, there is an important difference
in their dynamics. In the δ -regime of the quantum rotator, the mode of the pion field U(x) with zero
spatial momentum dominates with time-dependent quantum dynamics. The ε-regime is dominated
by the four-dimensional zero momentum mode of the chiral Lagrangian.

We report simulation results of all three regimes in the chirally broken phase of the technicolor
models we investigate. The analysis of the three regimes complement each other and provide
cross-checks for the correct identification of the phases. First, we will probe Eqs. (2.8-2.11) in
the p-regime, and follow with the study of Dirac spectra and RMT eigenvalue distributions in the
ε-regime. The spectrum in the δ -regime is used as a signal to monitor p-regime spectra as mq

decreases. Fig. 2 is an illustrative example of this crossover in our simulations. It is important
to note that the energy levels in the chiral limit do not match the rotator spectrum at the small
F ·Ls values of the simulations. This squeezing with F ·Ls not large enough for undistorted, finite
volume, chiral behavior in the p-regime, ε-regime, and δ -regime, will be further discussed in our
p-regime simulations presented next. We will also describe some methods to put this squeezing
into a more quantitative context.

3. Goldstone spectra and χSB from simulations at Nf = 4 in the p-regime

In this section we describe in some detail the methods we use for successfully testing chiral
symmetry breaking. Our tests in the p-regime have two major components. The primary test is to
identify the pseudo-Goldstone spectrum of the staggered formulation with evidence for recovery
from taste symmetry breaking close to the continuum limit. The secondary test is to probe chiral
loop corrections to the tree-level behavior of M2

π and Fπ as the fermion mass a ·mq is varied at
fixed gauge coupling β . The evidence we find for chiral symmetry breaking at N f = 4,8,9,12 is
common to all flavors. Limitations and ambiguities identified at N f = 4 for future improvements are
expected to be more pronounced with increasing N f . Results for each flavor we have simulated in
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Figure 3: The Goldstone spectrum and chiral fits are shown for simulations with lattice size 243×32. The
left column shows the pseudo-Goldstone spectrum with decreasing taste breaking as the gauge coupling is
varied from β = 3.5 to β = 3.7. The middle value at β = 3.6 was chosen for chiral fits which are shown
in the right column. The top right figure with fitting range a ·mq = 0.008− 0.025 shows the NLO chiral
fit to M2

π/mq which approaches 2B in the chiral limit. Data points below mq = 0.008 are not in the chiral
p-regime and not used in the fitting procedure.The middle figure on the right is the NLO chiral fit to Fπ in
the range a ·mq = 0.008−0.02. The bottom right figure is the linear fit to the chiral condensate with fitting
range a ·mq = 0.015−0.025. The physical fit parameters B,F,Λ3,Λ4 are discussed in the text.

the p-regime are presented in separate sections beginning here with general discussion and N f = 4
results.

We have used the tree-level Symanzik-improved gauge action for all simulations. The con-
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Chiral symmetry breaking in nearly conformal gauge theories

ventional β = 6/g2 lattice gauge coupling is defined as the overall factor in front of the three
well-known terms of the lattice action. The link variables in the staggered fermion matrix were
exponentially smeared with six stout steps at N f = 4 and the RHMC algorithm was deployed in all
runs. The results shown in Fig. 3 are from the p-regime of χSB with the conditions Mπ ·Ls� 1 and
Fπ ·Ls ∼ 1 when the chiral condensate begins to follow the expected behavior of infinite-volume
chiral perturbation theory from Eqs. (2.8,2.9) in next-to-leading order (NLO) with calculable fi-
nite volume corrections from Eqs. (2.10,2.11) which are negligible at Ls = 24. We have empirical
evidence that the Mπ and Fπ data points are free of finite volume corrections in practically the en-
tire fitting range of the fermion masses we use at Ls = 24 so that the negligible corrections from
Eqs. (2.10,2.11) can be ignored.

Within some finite volume limitations, which we will address, the N f = 4 simulations work
in the p-regime as expected. The left column of Fig. 3 shows that the pseudo-Goldstone spectrum
clearly remains separated from the hadronic scale of the ρ-meson as β is varied. Moving towards
the continuum limit with increasing β , we see the split pseudo-Goldstone spectrum collapsing into
the degenerate continuum pion spectrum. The true Goldstone pion whose mass will vanish in the
a ·mq = 0 limit at fixed lattice spacing and two additional split states with small residual masses at a ·
mq = 0 are shown to illustrate the trend. a4∆ is the measure of the small taste breaking in quadratic
mass splitting as measured in lattice units. The origin of the splittings and the quantum numbers
were discussed in Section 2 as shown in Eq. (2.7). The spectrum is approximately parallel as the
bare fermion mass a ·mq is varied at fixed lattice spacing and the gaps appear to be equally spaced
to a good approximation, consistent with earlier observations in QCD where the C4 term seems
to dominate staggered taste breaking for two light flavors with equally spaced pseudo-Goldstone
levels [59]. We selected β = 3.6 for testing χPT of finite volume Goldstone dynamics in the p-
regime. This choice with small taste breaking is close to the continuum limit without excessive
squeeze on the important product F · Ls which in an ideal simulation of the p-regime should be
large (F is the chiral limit of Fπ as a ·mq→ 0 at fixed lattice spacing).

The simultaneous chiral fit of M2
π/mq and Fπ based on Eqs. (2.8-2.11) is shown in Fig. 3

where chiral loops correct the tree-level values of M2
π/mq = 2B and Fπ . In the fitting range a ·mq =

0.008−0.025 applied to M2
π/mq we observe small corrections to the tree-level value of 2B which

keeps the fit well within the range of one-loop χPT. In the fitting range a ·mq = 0.008−0.02 the
Fπ data are about a factor of two larger than F which indicates how the one-loop fit is being pushed
to its limits. Without loop correction Fπ would not change from its fitted value of a ·F = 0.033(4)
in the chiral limit at fixed lattice spacing. The fitted value of B is a ·B = 1.76(7) in lattice units
and Mρ/F = 13(1) in the chiral limit (the linear fit of Mρ = c+d ·mq is used at all N f values to
determine Mρ(mq = 0)). The fitted value of B/F = 53(6) indicates significant enhancement of the
chiral condensate from its N f = 2 value [53, 68]. In our simultaneous fits we get Λ3 = 0.37(5) and
Λ4 = 0.51(1) which set the chiral couplings in the NLO chiral Lagrangian.

The chiral condensate 〈ψψ〉 summed over all flavors is dominated by the linear term in mq

from UV contributions. The linear fit gives 〈ψψ〉= 0.0191(4) in the chiral limit which differs from
the GMOR relation of 〈ψψ〉= 4F2B by about a factor of two with 4F2B = 0.008(2) fitted. There
are several sources of this disagreement. The chiral log in 〈ψψ〉 will bring further down the true
fitted value in the chiral limit. Our volumes are not large enough yet to attempt a sensible chiral log
fit to the condensate at small a ·mq values. Finite volume squeezing effects distort the consistency of
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the results in our limited range of simulation volumes. The choice of fitting method to Eqs. (2.8,2.9)
can also have some effect on the results. On the right-hand sides of the equations, the variable pair
(M, F) in the chiral logs can be replaced with the pair (Mπ , Fπ) which is equivalent to a partial
resummation [68]. This will be reported in our more detailed forthcoming journal publication [2].

Finite volume limitations when measured in F units have the biggest effect on our chiral anal-
ysis. The value F ·Ls ≈ 0.8 is not expected to protect against significant finite-volume squeezing
effects for even the largest spatial size Ls = 24 used in the chiral fits at N f = 4. Larger than opti-
mal NLO corrections in the chiral fits of Fπ and finite-volume squeezing effects are closely related
concerns. Simulations on larger lattices would increase F ·Ls and allow us to drop back in a ·mq

into a more comfortable range with smaller NLO chiral corrections for Fπ .
Finite volume corrections to the rotator spectrum in the δ -regime set some quantitative mea-

sure of squeezing effects on the chiral analysis. The connection is made by observing that the
pion spectrum in the p-regime can be viewed at fixed spatial volume L3

s as the adiabatic evolu-
tion from the energy levels of the rotator spectrum of the δ -regime as illustrated schematically
in Fig. 2 for the lowest N f = 2 rotator levels. The rotator spectrum for N f = 2 is given by
El =

1
2Θ

l(l + 2), with l = 0,1,2, ..., where the moment of inertia is calculated in NLO [69, 70]

as Θ = F2L3
s (1+

C(N f =2)
F2L2

s
+O( 1

F4·L4
s
)). The value of C(N f = 2) is known to be 0.45 and is expected

to grow with N f . At F ·Ls ≈ 0.8 the correction is 70% for N f = 2 and probably considerably larger

for N f = 4. The leading-order rotator gap for arbitrary N f is given by E1−E0 =
N2

f−1
N f F2L3

s
but the

coefficient C(N f ) is an important missing piece in the analysis. Were we to continue the p-regime
Goldstone spectrum at N f = 4, Ls = 24, and β = 3.6 to the δ -regime adiabatically, the small value
of F · Ls would not allow us to get a reliable estimate of F based on the chiral rotator spectrum
with the collapse of the adiabatic approximation. This is a quantitative warning sign of the need for
considerably larger spatial volume for robust p-regime results to determine F in the chiral fitting
procedure. In fact, we are going to fit M2

π/mq in the chiral analysis for N f = 8,9,12 with better
controlled NLO loop corrections, but Fπ will not be fitted. For larger N f , a reliable simultaneous
fit requires substantially larger volumes than are realistic with our current resources.

In summary, the N f = 4 system passed both tests in the chirally broken phase and shows signif-
icant enhancement of the chiral condensate when measured in units of the electroweak symmetry
breaking scale set by F . This is a relevant effect to monitor for fermion mass generation in extended
technicolor applications as we begin to approach the conformal window [53].

4. Goldstone spectrum and χSB from simulations at Nf = 8 in the p-regime

As we move to the N f = 8 p-regime simulations, we can clearly identify the p-regime of the
chirally broken phase as summarized in Fig. 4. The same lattice action and algorithm was used
for the N f = 8 p-regime simulations as introduced earlier for N f = 4. We can clearly identify the
pseudo-Goldstone spectrum which is separated from the technicolor scale of the ρ-meson. Moving
towards the continuum limit we observe at β = 1.4 the split pion spectrum collapsing toward the
true Goldstone pion with a new distinct feature. The true Goldstone pion, whose mass will vanish
in the a ·mq = 0 limit at fixed lattice spacing, and two additional split pseudo-Goldstone states
appear with considerably different slopes in Fig. 4 as mq increases. For small a ·mq we find the
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Figure 4: The Goldstone spectrum and chiral fits are shown for N f = 8 simulations with lattice size 243×32.
The left column shows the pseudo-Goldstone spectrum with decreasing taste breaking as the gauge coupling
is varied from β = 1.0 to β = 1.8. The middle value at β = 1.4 was chosen in the top right figure with fitting
range a ·mq = 0.015− 0.03 of the NLO chiral fit to M2

π/mq which approaches 2B in the chiral limit. The
middle figure on the right shows the Fπ data with no NLO fit far away from the chiral limit. The bottom
right figure is the linear fit to the chiral condensate with fitting range a ·mq = 0.02−0.04. The physical fit
parameters B,F,Λ3 are discussed in the text.

pseudo-Goldstone spectrum collapsed at fixed gauge coupling. Apparently the NLO operators,
the last two terms in Eq. (2.6), have a stronger effect on the spectra relative to leading-order taste
breaking operators, the generalization of those from N f = 4 to N f = 8 as discussed in Section 2.
This somewhat unexpected and unexplained trend is observed for N f > 8 as well.
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We analyzed the χSB pattern within staggered perturbation theory in its generalized form
beyond four flavors [60, 61]. The simultaneous chiral fit of M2

π/mq and Fπ based on Eqs. (2.8-2.11)
cannot be done at N f = 8 within the reach of the largest lattice sizes we deploy since the value of
F ·Ls is too small even at Ls = 24, for gauge couplings where taste breaking drops to an acceptable
level. The chiral fit of B,F,Λ3 to M2

π/mq, shown at the top right of Fig. 4, is based on Eq. (2.8) only
since the Fπ data points are outside the convergence range of the chiral expansion. Much larger
lattices are required to drop down in mq to the region where the simultaneous fit could be made,
while maintaining some control over finite volume and taste breaking effects. The finite volume
corrections were negligible in the fitted a ·mq range and Eqs. (2.10,2.11) were not needed.

At β = 1.4 the fitted value of B is a ·B = 2.6(3) in lattice units with a ·F = 0.0166(9) and
a ·Λ3 = 0.48(5) also fitted. The fitted ρ-mass in the chiral limit is a ·Mρ = 0.27(2) with Mρ/F =

17(1). The fitted value of B/F = 158(17) is not very reliable but indicates significant enhancement
of the chiral condensate from its N f = 4 value without including renormalization scale effects.
The chiral condensate 〈ψψ〉 summed over all flavors is dominated by the linear term in mq from
UV contributions. The linear fit gives 〈ψψ〉 = 0.012(1) in the chiral limit which differs from the
GMOR relation of 〈ψψ〉= 8F2B by about a factor of two with 8F2B = 0.0058(8) fitted. There are
several sources of this disagreement which were addressed for the N f = 4 case earlier. The chiral
log in 〈ψψ〉 will bring further down the true fitted value in the chiral limit. Our volumes are not
large enough yet to attempt a sensible chiral log fit to the condensate at small a ·mq values. Finite
volume squeezing effects distort the consistency of the results in our limited range of simulation
volumes. Similar observations should also be noted when the RMT analysis is applied in the ε-
regime.

5. Goldstone spectrum and χSB from simulations at Nf = 9 in the p-regime

We had two motivations for the N f = 9 simulation reported here. We wanted to see whether
the rooting procedure (being applied in our project with two fermions in the sextet representation)
will present some unexpected changes in the analysis and we were also looking for the continued
trends in the χSB pattern. We could not find any noticeable effect from the rooting procedure and
the symmetry breaking pattern was consistent with the N f = 8 simulations.

As shown in Fig. 5 the Goldstone spectrum is still clearly separated from the technicolor scale
of the ρ-meson. The true Goldstone pion and two additional split pseudo-Goldstone states are
shown again with different slopes as a ·mq increases. The trends and the underlying explanation
are similar to the N f = 8 case. The chiral fit to M2

π/mq is shown based on Eq. (2.8) only since
the Fπ data points are outside the convergence range of the chiral expansion. At β = 2.0 the fitted
value of B is a ·B = 2.8(4) in lattice units with a ·F = 0.017(2) and a ·Λ3 = 0.48(9) also fitted.
The fitted ρ-mass in the chiral limit is a ·Mρ = 0.233(3) with Mρ/F = 14(1). The fitted value of
B/F = 166(32) is not very reliable but comparable to the enhancement of the chiral condensate
found at N f = 8 without including renormalization scale effects. Again, at fixed lattice spacing, the
small chiral condensate 〈ψψ〉 summed over all flavors is dominated by the linear term in mq from
UV contributions. The linear fit gives 〈ψψ〉 = 0.0045(7) in the chiral limit which differs from
the GMOR relation of 〈ψψ〉= 9F2B by about a factor of two with 9F2B = 0.007(2) fitted. Open
issues in the systematics are similar to the N f = 8 case.
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Figure 5: The pseudo-Goldstone spectrum and chiral fits are shown for N f = 9 simulations with lattice size
243×32. The left column shows the pseudo-Goldstone spectrum with decreasing taste breaking as the gauge
coupling is varied from β = 1.6 to β = 2.4. Although the bottom figure on the left at β = 2.4 illustrates the
continued restoration of taste symmetry, the volume is too small for the Goldstone spectrum. The middle
value at β = 2.0 was chosen in the top right figure with fitting range a ·mq = 0.015−0.03 of the NLO chiral
fit to M2

π/mq which approaches 2B in the chiral limit. The middle figure on the right shows the Fπ data with
no NLO fit far away from the chiral limit. The bottom right figure is the linear fit to the chiral condensate
with fitting range a ·mq = 0.02− 0.04. The physical fit parameters B,F,Λ3 are discussed in the text. Four
stout steps were used in all N f = 9 simulations.

6. Goldstone spectrum and χSB from simulations at Nf = 12 in the p-regime

Finally we move to the controversial N f = 12 case. We find here a similar chiral symmetry
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Figure 6: The pseudo-Goldstone spectrum and chiral fits are shown for N f = 12 simulations with lattice size
243×32 and 324. The left column shows the pseudo-Goldstone spectrum with decreasing taste breaking as
the gauge coupling is varied from β = 2.0 to β = 2.4. Although the bottom figure on the left at β = 2.4
illustrates the continued restoration of taste symmetry, the volume is too small for the Goldstone spectrum.
The middle value at β = 2.2 was chosen in the top right figure with fitting range a ·mq = 0.015−0.035 of
the NLO chiral fit to M2

π/mq which approaches 2B in the chiral limit. The middle figure on the right shows
the Fπ data with no NLO fit far away from the chiral limit. The bottom right figure, with its additional
features discussed in the text, is the linear fit to the chiral condensate with fitting range a ·mq = 0.02−0.04.
The physical fit parameters B,F,Λ3 are discussed in the text. Two stout steps were used in all N f = 12
simulations.
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breaking pattern as we found in the N f = 8,9 cases with increased concerns about all the caveats
presented before. The Goldstone spectrum remains separated from the technicolor scale of the
ρ-meson. The true Goldstone pion and two additional split pseudo-Goldstone states are shown
again in Fig. 6 with different slopes as a ·mq increases. The trends and the underlying explanation
are similar to the N f = 8,9 cases. The chiral fit to M2

π/mq shown at the top right side of Fig. 6
is based on Eq. (2.8) only since the Fπ data points are outside the convergence range of the chiral
expansion. At β = 2.2 the fitted value of B is a ·B = 2.7(2) in lattice units with a ·F = 0.0120(1)
and a ·Λ3 = 0.50(3) also fitted. The fitted ρ-mass in the chiral limit is a ·Mρ = 0.115(15) from
a ·mq = 0.025−0.045 with Mρ/F = 10(1). The fitted value of B/F = 223(17) is not very reliable
but consistent with the enhancement of the chiral condensate found at N f = 8,9 without including
renormalization scale effects. Again, at fixed lattice spacing, the small chiral condensate 〈ψψ〉
summed over all flavors is dominated by the linear term in mq from UV contributions. The linear
fit gives 〈ψψ〉 = 0.0033(13) in the chiral limit which came out unexpectedly close the GMOR
relation of 〈ψψ〉= 12F2B with 12F2B = 0.0046(4) fitted. Issues and concerns in the systematics
are similar to the N f = 8,9 cases.

In summary, we have shown strong evidence that according to p-regime tests the N f = 4,8,9,12
systems all exhibit in the Goldstone and hadron spectra broken chiral symmetry close to the contin-
uum limit. There are some important features of the N f = 12 analysis which suggest that the model
is not only in the χSB phase but also close to slow walking of the renormalized gauge coupling.
The bottom right of Fig. 6 shows the crossover in the chiral condensate from strong coupling to
the weak coupling regime in the relevant range of mq. In combination with the nearly degenerate
Goldstone spectrum we find it quite suggestive that around β = 2.2 we are close to continuum be-
havior. In addition, we observe that the fitted value of the ρ-mass in the chiral limit hardly changes
in this region as the gauge coupling is varied (at β = 2.0 we fit a ·Mρ = 0.123(10)). If confirmed on
larger lattices, this could be a first hint of a slowly changing gauge coupling close to the conformal
window. Currently we are investigating the important N f = 12 model on larger lattices to probe the
possible influence of unwanted squeezing effects on the spectra. This should also clarify the mass
splitting pattern of the ρ and A1 states we are seeing in the chiral limit as N f is varied.

Our findings at N f = 12 are in disagreement with [32, 33]. Lessons from the Dirac spectra and
RMT to complement p-regime tests are discussed in the next section.

7. Epsilon regime, Dirac spectrum and RMT

If the bare parameters of a gauge theory are tuned to the ε-regime in the chirally broken phase,
the low-lying Dirac spectrum follows the predictions of random matrix theory. The corresponding
random matrix model is only sensitive to the pattern of chiral symmetry breaking, the topological
charge and the rescaled fermion mass once the eigenvalues are also rescaled by the same factor
ΣcondV . This idea has been confirmed in various settings both in quenched and fully dynamical
simulations. The same method is applied here to nearly conformal gauge models.

The connection between the eigenvalues λ of the Dirac operator and chiral symmetry breaking
is given in the Banks-Casher relation [71],

Σcond =−〈ΨΨ〉= lim
λ→0

lim
m→0

lim
V→∞

πρ(λ )

V
,
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Figure 7: From simulations at N f = 4 the first column shows the approach to quartet degeneracy of the
spectrum as β increases. The second column shows the integrated distribution of the two lowest quartets
averaged. The solid line compares this procedure to RMT with N f = 4.

where Σcond designates the quark condensate normalized to a single flavor. To generate a non-
zero density ρ(0), the smallest eigenvalues must become densely packed as the volume increases,
with an eigenvalue spacing ∆λ ≈ 1/ρ(0) = π/(ΣcondV ). This allows a crude estimate of the quark
condensate Σcond . One can do better by exploring the ε-regime: If chiral symmetry is spontaneously
broken, tune the volume and quark mass such that 1

Fπ
� L� 1

Mπ
, so that the Goldstone pion is

much lighter than the physical value, and finite volume effects are dominant as we discussed in
Section 2. The chiral Lagrangian of Eq. (2.2) is dominated by the zero-momentum mode from
the mass term and all kinetic terms are suppressed. In this limit, the distributions of the lowest
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eigenvalues are identical to those of random matrix theory, a theory of large matrices obeying
certain symmetries [72, 73, 74]. To connect with RMT, the eigenvalues and quark mass are rescaled
as z = λΣcondV and µ = mqΣcondV , and the eigenvalue distributions also depend on the topological
charge ν and the number of quark flavors N f . RMT is a very useful tool to calculate analytically all
of the eigenvalue distributions [75]. The eigenvalue distributions in various topological sectors are
measured via lattice simulations, and via comparison with RMT, the value of the condensate Σcond

can be extracted.
After we generate large thermalized ensembles, we calculate the lowest twenty eigenvalues

of the Dirac operator using the PRIMME package [76]. In the continuum limit, the staggered
eigenvalues form degenerate quartets, with restored taste symmetry. The first column of Fig. 7
shows the change in the eigenvalue structure for N f = 4 as the coupling constant is varied. At β =

3.6 grouping into quartets is not seen, the Goldstone pions are somewhat still split, and staggered
perturbation theory is just beginning to kick in. At β = 3.8 doublet pairing appears and at β = 4.0
the quartets are nearly degenerate. The Dirac spectrum is collapsed as required by the Banks-
Casher relation. In the second column we show the integrated distributions of the two lowest
eigenvalue quartet averages, ∫

λ

0
pk(λ

′)dλ
′, k = 1,2 (7.1)

which is only justified close to quartet degeneracy. All low eigenvalues are selected with zero
topology. To compare with RMT, we vary µ = mqΣcondV until we satisfy

〈λ1〉sim

m
=
〈z1〉RMT

µ
, (7.2)

where 〈λ1〉sim is the lowest quartet average from simulations and the RMT average 〈z〉RMT depends
implicitly on µ and N f . With this optimal value of µ , we can predict the shapes of pk(λ ) and
their integrated distributions, and compare to the simulations. The agreement with the two lowest
integrated RMT eigenvalue shapes is excellent for the larger β values.

The main qualitative features of the RMT spectrum are very similar in our N f = 8 simulations
as shown in Fig. 8. One marked quantitative difference is a noticeable slowdown in response to
change in the coupling constant. As β grows the recovery of the quartet degeneracy is considerably
delayed in comparison with the onset of p-regime Goldstone dynamics. Overall, for the N f = 4,8
models we find consistency between the p-regime analysis and the RMT tests. Earlier, using Asqtad
fermions at a particular β value, we found agreement with RMT even at N f = 12 which indicated a
chirally broken phase [24]. Strong taste breaking with Asqtad fermions leaves the quartet averaging
in question and the bulk pronounced crossover of the Asqtad action as β grows is also an issue.
Currently we are investigating the RMT picture for N f = 9,10,11,12 with our much improved
action with stout smearing. This action shows no artifact transitions and handles taste breaking
much more effectively. Firm conclusions on the N f = 12 model to support our findings of χSB in
the p-regime will require continued investigations.

8. Inside the conformal window

We start our investigation and simulations of the conformal window at N f = 16 which is the
most accessible for analytic methods. We are particularly interested in the qualitative behavior of
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Figure 8: The solid lines compare the integrated distribution of the two lowest quartet averages to RMT
predictions with N f = 8.

the finite volume spectrum of the model and the running coupling with its associated beta function
which is expected to have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated from the
scheme-independent, two-loop beta function [77]. A distinguished feature of the N f = 16 confor-
mal model is how the renormalized coupling g2(L) runs with L, the linear size of the spatial volume
in a Hamiltonian or Transfer Matrix description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. However, g2(L) will not grow large, and
in the L→ ∞ limit it will converge to the fixed point g∗2 which is rather weak, within the reach
of perturbation theory. There is non-trivial, small-volume dynamics which is illustrated first in the
pure gauge sector.

At small g2, without fermions, the zero-momentum components of the gauge field are known
to dominate the dynamics [78, 79, 80]. With SU(3) gauge group, there are twenty-seven degen-
erate vacuum states, separated by energy barriers which are generated by the integrated effects
of the non-zero momentum components of the gauge field in the Born-Oppenheimer approxima-
tion. The lowest-energy excitations of the gauge field Hamiltonian scale as ∼ g2/3(L)/L evolving
into glueball states and becoming independent of the volume as the coupling constant grows with
L. Non-trivial dynamics evolves through three stages as L grows. In the first regime, in very
small boxes, tunneling is suppressed between vacua which remain isolated. In the second regime,
for larger L, tunneling sets in and electric flux states will not be exponentially suppressed. Both
regimes represent small worlds with zero-momentum spectra separated from higher momentum
modes of the theory with energies on the scale of 2π/L. At large enough L the gauge dynamics
overcomes the energy barrier, and wave functions spread over the vacuum valley. This third regime
is the crossover to confinement where the electric fluxes collapse into thin string states wrapping
around the box.

It is likely that a conformal theory with a weak coupling fixed point at N f = 16 will have only
the first two regimes which are common with QCD. Now the calculations have to include fermion
loops [81, 82]. The vacuum structure in small enough volumes, for which the wave functional
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is sufficiently localized around the vacuum configuration, remains calculable by adding in one-
loop order the quantum effects of the fermion field fluctuations. The spatially constant abelian
gauge fields parametrizing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta are the (N-1)
generators for the Cartan subalgebra of SU(N). For SU(3), T1 = λ3/2 and T2 = λ8/2. With N f

flavors of massless fermion fields the effective potential of the constant mode is given by

V k
eff(C

b) = ∑
i> j

V (Cb[µ
(i)
b −µ

( j)
b ])−N f ∑

i
V (Cb

µ
(i)
b +πk), (8.1)

with k = 0 for periodic, or k = (1,1,1), for antiperiodic boundary conditions on the fermion fields.
The function V (C) is the one-loop effective potential for N f = 0 and the weight vectors µ(i) are
determined by the eigenvalues of the abelian generators. For SU(3) µ(1) = (1,1,−2)/

√
12 and

µ(2) = 1
2(1,−1,0). The correct quantum vacuum is found at the minimum of this effective potential

which is dramatically changed by the fermion loop contributions. The Polyakov loop observables
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Figure 9: The time evolution of complex Polyakov loop distributions are shown from our N f = 16 simula-
tions with 123× 36 lattice volume. Tree-level Symanzik-improved gauge action is used in the simulations
and staggered fermions with three stout steps and very small fermion masses.

remain center elements at the new vacuum configurations with complex values; for SU(N)

Pj =
1
N

tr
(

exp(iCb
j Tb)

)
=

1
N ∑

n
exp(iµ(n)

b Cb
j ) = exp(2πil j/N). (8.2)

This implies µ
(n)
b Cb = 2πl/N (mod 2π), independent of n, and V k

eff =−N f NV (2πl/N+πk). In the
case of antiperiodic boundary conditions, k = (1,1,1), this is minimal only when l = 0 (mod 2π).
The quantum vacuum in this case is the naive one, A = 0 (Pj = 1). In the case of periodic boundary
conditions, k = 0, the vacua have l 6= 0, so that Pj correspond to non-trivial center elements. For
SU(3), there are now 8 degenerate vacua characterized by eight different Polyakov loops, Pj =

exp(±2πi/3). Since they are related by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP is still a good symmetry [81].

Our simulations of the N f = 16 model below the conformal fixed point g∗2 confirm the theo-
retical vacuum structure. Fig. 9 shows the time evolution of Polyakov loop distributions monitored
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along the three separate spatial directions. On the left side, with periodic spatial boundary condi-
tions, the time evolution is shown starting from randomized gauge configuration with the Polyakov
loop at the origin. The system evolves into one of the eight degenerate vacua selected by the
positive imaginary part of the complex Polyakov loop along the x and y direction and negative
imaginary part along the z direction. On the right, with antiperiodic spatial boundary conditions,
the vacuum is unique and trivial with real Polyakov loop in all three directions. The time evolution
is particularly interesting in the z direction with a swing first from the randomized gauge configu-
ration to a complex metastable minimum first, and eventually tunneling back to the trivial vacuum
and staying there, as expected. The measured fermion-antifermion spectra and the spectrum of the
Dirac operator further confirm this vacuum structure. Our plans include the continued investiga-
tion of zero-mode gauge dynamics which should clarify many important aspects of conformal and
nearly conformal gauge theories.
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