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1. Introduction

Effective field theory (EFT) is a powerful tool in the description of th@sty interactions at
low energies. The central idea is due to Weinbgkg [1]:

"... if one writes down the most general possible Lagrangian, includingradkteon-
sistent with assumed symmetry principles, and then calculates matrix elements with
this Lagrangian to any given order of perturbation theory, the resultsiviiply be

the most general possible S—matrix consistent with analyticity, perturbatiteerity,
cluster decomposition and the assumed symmetry principles."

The prerequisite for an effective field theory program is (a) a knogdeaf the most general ef-
fective Lagrangian and (b) an expansion scheme for observablestie td a consistent power
counting method. The application of these ideas to the interactions among tretdaeltbosons
of spontaneous chiral symmetry breaking in QCD results in mesonic chirtalrpation theory
(ChPT) [1.[2] (see, e.g., Refd] [B, B, 5] for an introduction and iear). The combination of
dimensional regularization with the modified minimal subtraction scheme of CHP€das to
a straightforward correspondence between the loop expansion actithkexpansion in terms
of momenta and quark masses at a fixed ratio, and thus provides a cdrsisten counting for
renormalized quantities.

The situation gets more complicated once other hadronic degrees ofrfrésyond the Gold-
stone bosons are considered. Together with such hadrons, ancalenothe order of the chiral
symmetry breaking scalky enters the problem and the methods of the pure Goldstone-boson sec-
tor cannot be transferred one to one. For example, in the extension taghaucleon sector the
correspondence between the loop expansion and the chiral expaaisfost sight, seems to be
lost: higher-loop diagrams can contribute to terms as low &g) [B]. For a long time this was
interpreted as the absence of a systematic power counting in the relativistiglétion of ChPT.
However, over the last decade new developments in devising a suitablenaization scheme
have led to a simple and consistent power counting for the renormalizecudiagf a manifestly
Lorentz-invariant approach.

2. Renormalization and power counting

The effective Lagrangian relevant to the one-nucleon sector cons$igte sum of the purely
mesonic andiN Lagrangians, respectively,

Lot =Lt Ln=LE + LD+ 4 2L A 2.1)

which are organized in a derivative and quark-mass expansion:-I&elecalculations involving
the sumZ,(TZ) +.Z,§,{,) reproduce the current algebra results. When studying higher ardeestur-
bation theory in terms of loop corrections one encounters ultravioletgiinees. In the process of
renormalization the counter terms are adjusted such that they absorb dita®let divergences
occurring in the calculation of loop diagrams. This will be possible, bectheskagrangian in-
cludes all of the infinite number of interactions allowed by symmetfies [7]. Blae when renor-
malizing, we still have the freedom of choosing a renormalization conditior.pbwer counting
is intimately connected with choosing a suitable renormalization condition.
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2.1 Thegeneration of counter terms

Let us briefly recall the renormalization procedure in terms of the lowelgraiN Lagrangian
.Z,ﬁ,{,). At the beginning, the (total effective) Lagrangian is formulated in ternfgoé (i.e. unrenor-
malized) parameters and fields. After expressing the bare parametebps@nfields in terms of
renormalized quantities, the Lagrangian decomposes into the sum of bdstoamter-term La-
grangians (see, e.g., Reff. [{]} [8] for details). For example, thie hagrangian of lowest order
reads

— /. 1
gf&fil)basic: W(lyﬂdﬁl—m_zgl:AV“VSau(ﬂTi)Lp"i‘"', (2.2)

where the ellipsis refers to terms containing external fields and higherrp@f/¢he pion fields.

We choose the renormalization condition such thag », andF denote the chiral limit of the phys-
ical nucleon mass, the axial-vector coupling constant, and the pion-decayant, respectively.
Expanding the counter-term Lagrangian in powers of the renormaliaguling constants gener-
ates an infinite series. By adjusting the expansion coefficients suitably, dividiral terms are

responsible for the subtractions of loop diagrams.

2.2 Power counting for renormalized diagrams

Whenever we speak of renormalized diagrams, we refer to diagrams Wwhiehbeen cal-
culated with a basic Lagrangian and to which the contribution of the countartiegrangian has
been added. Counter-term contributions are typically denoted by a @asslso says that the dia-
gram has been subtracted, i.e., the unwanted contribution has been demithvilie understanding
that this can be achieved by a suitable choice for the coefficient of thaersterm Lagrangian.
In this context thdinite pieces of the renormalized couplings are adjusted such that the renormal-
ized diagrams satisfy the following power counting: a loop integratiomdimensions counts as
g", pion and nucleon propagators counigg$ andq 1, respectively, vertices derived froﬁf,fk)
andf,&,'ﬁ,) count asg and g, respectively. Hereg collectively stands for a small quantity such
as the pion mass, small external four-momenta of the pion, and small extereamomenta of
the nucleon. The power counting does not uniquely fix the renormalizattoemse, i.e., there are
different renormalization schemes leading to the above specified powetirg.

2.3 The power-counting problem

In the mesonic sector, the combination of dimensional regularization and thiéedadinimal
subtraction schemMS leads to a straightforward correspondence between the chiral apd lo
expansions. By discussing the one-loop contribution of [fig. 1 to the nusleld energy, we will
see that this correspondence, at first sight, seems to be lost in thenicasgator. According
to the power counting specified above, after renormalization, we would likete the order
D=n-1-2-1-1-1+1-2=n-1. An explicit calculation yields

2 _
Zjoop = _jﬁ% {(P+m)|N +M2(p+m)Ing— (IOZPTZ)F)KPZ— M +M?)Inr+ In — |n]} ;
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Fig(]u>re 1: Renormalized one-loop self-energy diagram. The numberthdrinteraction blobs refers to
ZN.

whereM? = 2B is the lowest-order expression for the squared pion mass in terms of the low-
energy coupling constaBtand the average light-quark masg]. The relevant loop integrals are
defined as

= 1" / 27T”k2 M2+|O+’ 2:3)
= ut / 2mn k2 — n12+|0+’ (2.4)
_ 44-n [ 1
INm = H /(271) N[(k—p)2—mP+i0t] k2 —M2+i0*" (2:5)
The application of théS renormalization scheme of ChHAT [2, 6]—indicated by “r'—yields
304
Iroop = 4FAr [ (P+ m) Nrr+ ]

The expansion off,; is given by

o= L (™
Nt = ge\ T T T T )

resulting mZIOOp 0(9?). In other words, thé1S-renormalized result does not produce the desired
low-energy behavior which, for a long time, was interpreted as the absd#racsystematic power
counting in the relativistic formulation of ChPT.

The expression for the nucleon masg is obtained by solving the equation

my—m—2(my) =0,

from which we obtain for the nucleon mass in & scheme[J6],
3gi M2 BgZM°
32m2F2 32mF2°
At 0(¢?), Eq. (2-p) contains besides the undesired loop contribution proportonéd the tree-
level contribution—4cy, M? from the next-to-leading-order Lagrangi&‘)&,%,).

The solution to the power-counting problem is the observation that the tetatingpthe power
counting, namely, the third on the right-hand side of Eq] (2.6)niyticin the quark mass and can

thus be absorbed in counter terms. In addition toMi$&scheme we have to perform an additional
finite renormalization. For that purpose we rewrite

My = m—4cy, M? + (2.6)

3“'9%\
“SA L. 2.7
C1|-—C1—|—5C17 5C1 12 2F2+ ( )
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in Eq. (2.6) which then gives the final result for the nucleon mags(gt):

(2.8)

We have thus seen that the validity of a power-counting scheme is intimatelgacednwith a
suitable renormalization condition. In the case of the nucleon mask|$techeme alone does not
suffice to bring about a consistent power counting.

2.4 Solutionsto the power-counting problem
2.4.1 Heavy-baryon approach

The first solution to the power-counting problem was provided by theyhbakyon formula-
tion of ChPT [§[IP]. The basic idea consists in dividing an external madieur-momentum into a
large piece close to on-shell kinematics and a soft residual contribytiermv+kp, v2 = 1,0 > 1
[often V¥ = (1,0,0,0)]. The relativistic nucleon field is expressed in terms of velocity-dependen
fields,

\P(x) :efimv‘x(%—l—j%),
with 1
JK/ e—HmVX (l_|_y) jf +|mvx (1 )0)

Using the equation of motion foﬁfﬁ,, one can eliminateZg, and obtaln a Lagrangian for which,
to lowest order, read$ [1L0]

.,?(1) A(IV-D+gaS, - U)K+ 6(1/m), Sf:léym“"vv.

The result of the heavy-baryon reduction is/anlexpansion of the Lagrangian similar to a Foldy-
Wouthuysen expansion. In higher orders in the chiral expansionxfiressions due to/n cor-
rections of the Lagrangian become increasingly complicdtdd [11]. Mereeand what is more
important—the approach sometimes generates problems regarding analyBgity [1

2.4.2 Master integral

We have seen that the modified minimal subtraction schit8edoes not produce the de-
sired power counting. We will discuss the power-counting problem in tefrtteeadimensionally
regularized one-loop integral

o dk 1
H(p", P, M%n) = _'/(2n)n = 2p-kt (P—md) rioj@e—meriory @9

We are interested in nucleon four-momenta close to the mass-shell congfieny?, counting
p? —n? asd(q) andM? as@'(g?). Making use of the Feynman parametrization

I
ab  Jo [az+Db(1-2)2

with a=k?—2p-k+ (p? —?) +i0* andb = k — M?+i0™, interchanging the order of integrations,
and performing the shit — k4 zp, one obtains

H (p2, 2, M2:n) — ( / dzZ/A(2) —i0"]? (2.10)
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whereA(z) = 22p? — z(p? — m? +M?) + M2, The relevant properties can nicely be displayed at
the thresholdpZ, = (m+M)?2, whereA(z) = [z(m+ M) — M]? is particularly simple. Splitting the
integration interval intd0, zo] and|zy, 1] with zo = M /(m-+ M), we have, fon > 3,

/1dz[A(z>]2-2 — /zodz[M —z(m+ M)]“‘4+/ldz[z(m+ M) — M4
0 0 I

1 s
= oy mem ™M),

yielding, through analytic continuation, for arbitramy

H((m+M)2 m?, M%n) = r2-3) < (2.11)

Mn73 mrkB
~ (4min-3) ) |

m+M+m+M

The first term, proportional td1"~3, is defined as the so-called infrared singular parSince
M — 0 impliesp3, — P this term is singular fon < 3. The second term, proportionalnd 3, is
defined as the infrared regular p&t

2.4.3 Infrared regularization

Theformal definition of Becher and Leutwylef JIL2] for the infrared singular argliter parts
for arbitrary p> makes use of the Feynman parametrization of Eq.1(2.10). The resultingaintegr
over the Feynman parameteis rewritten as

1 0 0
H:/ dz~--:/ dz---—/ dz.--=1+R 2.12)
0 0 1

What distinguishes from R s that, for non-integer values of the chiral expansion dfgives rise

to non-integer powers af (q), whereas the regular pdtmay be expanded in an ordinary Taylor
series. For the threshold integral, this can nicely be seen by expahgiagd Ry, in the pion
mass counting a&'(q). On the other hand, it is the regular part which does not satisfy the cguntin
rules. The basic idea of the infrared renormalization consists of repl#wngeneral integrall of

Eq. (2.1D) by its infrared singular pdrand dropping the regular pa®t In the low-energy region

H andl have the same analytic properties whereas the contributiét) which is of the type of

an infinite series in the momenta, can be included by adjusting the coefficighis miost general
effective Lagrangian. This is the infrared renormalization condition. iBsu$sed in detail in Ref.
[LZ], the method can be generalized to an arbitrary one-loop graph.

2.4.4 Extended on-mass-shell scheme

In the following, we will concentrate on yet another solution which has beetivated in
Ref. [13] and has been worked out in detail in REf] [14]. The cerdes consists of performing
additional subtractions beyond thdS scheme such that the renormalized diagrams satisfy the
power counting (Ehoosing a suitable renormalization conditipn Terms violating the power
counting are analytic in small quantities and can thus be absorbed in a réizatima of counter
terms. In order to illustrate the approach, let us consider as an exampleetpairof Eq. [2]9) in
the chiral limit,

2 _ d"k [
H (P, 0im) = / (2" [ —2p K+ (P2 — @) 1107][k2 1107]’
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where

is a small quantity. We want the (renormalized) integral to be of didern—1—2=n—-3. The
result of the integration is of the form (see REf][14] for detdilsy F (n,A) +A"3G(n,A), where

F andG are hypergeometric functions and are analyti&ifor anyn. Hence, the part containing
G for nonintegemn is proportional to a noninteger power&fand satisfies the power counting. The
observation central for the setting up of a systematic method is the fact tharth@oportional to

F can be obtained by first expanding the integrand in small quantitiethangderforming the inte-
gration for each tern{]15]. Itis this part which violates the power counting since it is analytic
in A, the power-counting violating pieces can be absorbed in the counter térms.observa-
tion suggests the following procedure: expand the integrand in small qusiatittesubtract those
(integrated) terms whose order is smaller than suggested by the pow¢ingo@®ince the subtrac-
tion point isp? = n?, the renormalization condition is denoted “extended on-mass-shell” (EOMS)
scheme in analogy with the on-mass-shell renormalization scheme in renobtetizaories. In
the present case, the subtraction term reads

Hsubtr:/ d'k i
(2m)" [k —2p-k-+i0"][2+i07] | o_pe

and the renormalized integral is written as
HR —H-— Hsubtr: ﬁ(qn*3)

2.5 Remarks

Using a suitable renormalization condition one obtains a consistent powetirgin man-
ifestly Lorentz-invariant baryon ChPT including, e.g., (axial) vector megf§] or theA(1232)
resonance[[17] as explicit degrees of freedom. The infrared nézatian of Becher and Leutwyler
[LZ] has been reformulated in a form analogous to the EOMS renormaliZ8prirhe application
of both infrared and extended on-mass-shell renormalization schemedtiidomp diagrams was
explicitly demonstrated by means of a two-loop self-energy diagkam [18f#ment of unstable
particles such as the rho meson is possible in terms of the complex-mass rézatiome[20)].

3. Applications

In the following we will illustrate a few selected applications of the manifestly htre
invariant framework to the one-nucleon sector.

3.1 Nucleon massat ¢(q?)

A full one-loop calculation of the nucleon mass also includég*) terms (see Fid]2). The
quark-mass expansion up to and includifigg?) is given by

My = M-+ k;M2 4+ koM3 + ksM?1n <m> +k4M* + O (M®), (3.1)
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Figure 2: Contributions to the nucleon self energytq*). The numben in the interaction blobs refers
to .Z ). The Lagrang|a|:12ﬂ does not produce a contribution to tiBIN vertex.

where the coefficients in the EOMS scheme reafl |14]

_ _ 3ga° _ 3 2
ko= e, ke=-gpmes K=~ gpppay (9a— Bom+ cmdcm),
3gA2 3 ~
= _—“8 _ (144 ——————Cp— 6. 3.2
K = Sprerzm LA™ T Togepe® & 5.2

Here, € = 16e3g+ 2115+ 2€116 is a linear combination of’(q*) coefficients [I1]. A compari-
son with the results using the infrared regularizatipr} [12] shows that thesteerder correction
(ky term) and those terms which are non-analytic in the quark mmafle andks terms) coin-
cide. On the other hand, the analykicterm (~ M%) is different. This is not surprising; although
both renormalization schemes satisfy the power counting specified iff Sethe2ie of different
renormalization conditions is compensated by different values of thermaiaed parameters.

For an estimate of the various contributions of Hq.(3.1) to the nucleon massake use of
the parameter set

c1=-09mt, co=25myl, c3=-42mt, o =23mt, (3.3)

which was obtained in Ref[ [R1] from a (tree-level) fit to thid scattering threshold parameters.
Using the numerical values

0a=1267, Fr=924MeV, my=m,=9383MeV, Mp=My; =1396MeV, (3.4)
one obtains for the mass of nucleon in the chiral limit (at firegZ 0) [22]:
m=my —Am=[9383—- 748+ 153+ 4.7+ 1.6 — 2.3+ 4] MeV = (883+4) MeV (3.5)

with Am = (5554 4)MeV. Here, we have made use of an estimategidn* = (2.34+4) MeV
obtained from the sigma term = (45+ 8) MeV. Note that errors due to higher-order corrections
are not taken into account.

3.2 Chiral expansion of the nucleon massto &(qf)

So far, essentially all of the manifestly Lorentz-invariant calculations haen restricted to
the one-loop level. One of the exceptions is the chiral expansion of tHearmumass which, in
the framework of the reformulated infrared regularization, has beenlagdc up to and including

°) [B3.241:
my = m+k1M2+k2M3+k3M4In'ZI+k4M4+k5M5Inl\:+k6M5+k7M6In2|\:+k8M6InI\:JrkgMG.
(3.6)
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Figure3: Pion mass dependence of the tdgh!®In(M/my) (solid line) forM < 400 MeV. For comparison
also the ternkoM? (dashed line) is shown.

We refrain from displaying the lengthy expressions for the coefficiknisit rather want to dis-
cuss a few general implicationf J24]. Chiral expansions like Eq. (3.6¢ntly play an important
role in the extrapolation of lattice QCD results to physical quark masses.rtunétely, the nu-
merical contributions from higher-order terms cannot be calculatedrssinfee, starting wittky,
most expressions in Eq._(B.6) contain unknown low-energy couplingtaots (LECs) from the
Lagrangians o#7(g*) and higher. The coefficierk is free of higher-order LECs and is given in
terms of the axial-vector coupling constaytand the pion-decay constant

30%

ks = T0oa0Fa

(169% —3).

While the values for botly, andF should be taken in the chiral limit, we evaludgeusing the
physical valuegia = 1.269529) andF; = 92.42(26) MeV. Settingu = my, My = (Mp+my) /2=
93892 MeV, andVl = M+ = 13957 MeV we obtairksM®In(M/my) = —4.8 MeV. This amounts
to approximately 31% of the leading non-analytic contribution at one-looprokgM2. Figure
shows the pion mass dependence of the ties®In(M/my) (solid line) in comparison with
the termkoM? (dashed line) for pion masses below 400 MeV which is considered a regiere
chiral extrapolations are valid (see, e.g., Rdfs] [25, 29]). We seelifeztdy aM ~ 360 MeV the
termksM®In(M/my) becomes as large as the leading non-analytic term at one-loop ki,
indicating the importance of the fifth-order terms at unphysical pion magdesresults for the
renormalization-scheme-independent terms agree with the heavy-t@mRinresults of Ref[[30].

3.3 Probing the convergence of perturbative series

The issue of the convergence of perturbative calculations is presdrghgat interest in the
context of chiral extrapolations of baryon properties (see, e.g., B&427,[2B]). A possibility of
exploring the convergence of perturbative series consists of summiogrtgin sets of an infinite
number of diagrams by solving integral equations exactly and comparinghioss with the
perturbative contributiong TR9]. Figufg 4 shows a graphical reptatien of an iterated contribu-
tion to the nucleon self energy originating from the Weinberg-Tomozawaitetine 7N scattering
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Figure 4: Iterated contribution to the nucleon self energy.
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Figure5: Contributions to the nucleon mass as functionsofSolid line: &(g®) contribution, dashed line:
dmof Eq. (3.}); dashed-dotted line: two-loop diagram of fig. 4

amplitude. The result is of the forrh [29]

392N
=——0_ v
om=—2r2p 3.7
whereN andD are closed expressions in terms of the loop functions of fqs. (2[3) - @y>%¢x-
panding Eq.[(3]7) in powers of/E? one can identify the contributions of each diagram separately.
Using the IR renormalization scheme and substitutimg 883 MeV,my = 9383 MeV, F =924

MeV, ga = 1.267 andM = 1396 MeV one obtains
om= —0.00233530 Me\~= (—0.00230219- 0.00003305- 0.0000000%----) MeV. (3.8)

The first term in the perturbative expansion reproduces the nonrpatiite result well and the
higher-order corrections are clearly suppressed. Figure 5 sboves Eq. (3.7) together with the
leading contribution (first diagram in Fifj. 4) and the leading non-analytiection to the nucleon
massdmg = —3g3M3/(32tF2) [f] as functions ofM. As can be seen from this figure, up to
M ~ 500 MeV the non-perturbative sum of higher-order corrections ipragsed in comparison
with the dmg term. Also, the leading higher-order contribution reproduces the ndorpative
result quite well. On the other hand, gk > 600 MeV the higher-order contributions are no longer
suppressed in comparison widmg.

3.4 Electromagnetic form factors of the nucleon

Imposing the relevant symmetries such as translational invariance, Larevdriance, the
discrete symmetries, and current conservation, the nucleon matrix elefripatedectromagnetic

10
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Figure 6: The Sachs form factors of the nucleon in manifestly Loremtzriant chiral perturbation theory
at ¢(q*) without vector mesons. Full lines: results in the extendednass-shell scheme; dashed lines:
results in infrared regularization. The experimental datataken from Ref|I:]34].

current operator# #(x) can be parameterized in terms of two form factors,
_ (ols
NP/, 9)|7# (0)IN(p,9)) = 0[P/, ¢) [F (@) +i qVFz (@) |u(p.s), N=pn (3.9)

whereq = p — p, Q> = —¢?, and m, is the proton mass. AD? = 0, the so-called Dirac and
Pauli form factord-; andF, reduce to the charge and anomalous magnetic moment in units of the
elementary charge and the nuclear magnejg8m;), respectively,

FP(0)=1, F(0)=0, F(0)=1793 F}(0)=-1913
The Sachs form factoiGg andGy, are linear combinations &% andF,

GN(@) = (@) - 4?@5 @), M@= +FN@). N=pn

and, in the non-relativistic limit, their Fourier transforms are commonly intergrasehe distribu-
tion of charge and magnetization inside the nucleon.

Calculations in Lorentz-invariant baryon ChPT up to fourth order failésatibe the proton
and nucleon form factors for momentum transfers bey@he 0.1 Ge\? [B1,[32]. Moreover, up to
and includingZ(q*), the most general effective Lagrangian provides sufficiently manyienigent
parameters such that the empirical values of the anomalous magnetic momeiite ahdrge
and magnetic radii are fitted rather than predicted. Fifjure 6 shows the Saohfactors in the
momentum transfer region 0Gé¥ Q? < 0.4Ge\? in the EOMS scheme and the reformulated
infrared regularizatior{[33].

In Ref. [B3] it was shown that the inclusion of vector mesons can restiieine-summation of
important higher-order contributions. In Ref.]33] the electromagnetin flactors of the nucleon
up to fourth order have been calculated in manifestly Lorentz-invariaBf@tith vector mesons as
explicit degrees of freedom. A systematic power counting for the renoredadiimgrams has been
implemented using both the extended on-mass-shell renormalization schethe agfdrmulated
version of infrared regularization. As expected on phenomenologrcaingls, the quantitative

11



Baryon chiral perturbation theory Stefan Scherer

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
0? [GeV?] 0? [GeV?] Q? [Gev4 0? [Gev?

Figure7: The Sachs form factors of the nucleon in manifestly Loremzriant chiral perturbation theory
at 0(q*) including vector mesons as explicit degrees of freedom! IFds: results in the extended on-
mass-shell scheme; dashed lines: results in infraredaggation. The experimental data are taken from

Ref. [34].

description of the data has improved considerably@3r> 0.1 Ge\? (see Fig[[7). The small
difference between the two renormalization schemes is due to the way howgihl@rr higher-
order terms of loop integrals are treated. Numerically, the results are similavge tfi Ref. [31].
Due to the renormalization condition, the contribution of the vector-meson |l@gpains either
vanishes (IR) or turns out to be small (EOMS). Thus, in hindsight oprageh puts the traditional
phenomenological vector-meson-dominance model on a more solid theldrasisa The inclusion
of vector-meson degrees of freedom in the present framework resalteordering of terms which,
in an ordinary chiral expansion, would show up at higher ordersrmyt(g*). It is these terms
which change the form factor results favorably for larger valuggofit should be noted, however,
that this re-organization proceeds according to well-defined rules s@ ttantrolled, order-by-
order, calculation of corrections is made possible.

3.5 Axial and induced pseudoscalar form factors
Assuming isospin symmetry, the most general parametrization of the isoveabrector
current evaluated between one-nucleon states is given by

— q

(N(E)A2(O)N(p) = TP [ 16Ga(@) + ot Go(@)| Sup),  (3.10)

2my
whereq = p' — p, @> = —¢?, andmy denotes the nucleon mas8a(Q?) is called the axial form
factor andGp(Q?) is the induced pseudoscalar form factor. The value of the axial footorfa
at zero momentum transfer is defined as the axial-vector coupling corgiantGa(Q? = 0) =
1.269529), and is quite precisely determined from neutron beta decayQFltependence of the
axial form factor can be obtained either through neutrino scattering orghétroproduction (see,
e.g., Ref. [3p]). The induced pseudoscalar form fa@p(Q?) has been investigated in ordinary
and radiative muon capture as well as pion electroproduction (seeF8fof a review).

In Ref. E] the form factor$sa andGp have been calculated in manifestly Lorentz-invariant
baryon ChPT up to and including ordéi(g*). In addition to the standard treatment including the
nucleon and pions, the axial-vector mesa(i1260 has also been considered as an explicit degree
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Figure 8: Left panel: Axial form factorGa in manifestly Lorentz-invariant ChPT at(q*) including the
axial-vector mesomy (1260 explicitly. Full line: result in infrared renormalizatipmlashed line: dipole
parametrization. The experimental data are taken from I. Right panel: The induced pseudoscalar
form factorGp in manifestly Lorentz-invariant ChPT &t(g*) including the axial-vector mesca (1260
explicitly. Full line: result with axial-vector meson; ded line: result without axial-vector meson. One can
clearly see the dominant pion pole contributiorQ8t~ —M2.

of freedom. The inclusion of the axial-vector meson effectively resulta@eaalditional low-energy
coupling constant which has been determined by a fit to the da@f@?). The inclusion of the
axial-vector meson results in an improved description of the experimentdioda®a (see Fig[B),
while the contribution t&p is small.

4. Summary and conclusion

In the baryonic sector new renormalization conditions have reconciled thiéasidy Lorentz-
invariant approach with the standard power counting. We have distass® results of a two-loop
calculation of the nucleon mass. The inclusion of vector and axial-vectames explicit degrees
of freedom leads to an improved phenomenological description of the @ieagnetic and axial
form factors, respectively. Work on the application to electromagnetiogsses such as Compton
scattering and pion production is in progress.

| would like to thank D. Djukanovic, T. Fuchs, J. Gegelia, G. Japaridaeé M. R. Schindler
for the fruitful collaboration on the topics of this talk. This work was madesis by the financial
support from the Deutsche Forschungsgemeinschaft (SFB 443Gii# 859/2-1) and the EU In-
tegrated Infrastructure Initiative Hadron Physics Project (contnather RII3-CT-2004-506078).
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