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1. Introduction 

Higgs statistics is about testing one hypothesis against another hypothesis. For 
example, one hypothesis is the Standard Model (SM) with no Higgs Boson (let us 
denote this hypothesis by H0). The other hypothesis is the SM with a Higgs Boson with 
a specific mass mH (H1). The other hypothesis could also be a SM Higgs boson at some 
unspecified mass. 

Rejecting the No-Higgs (H0) hypothesis is considered to be a discovery, while 
rejecting the Higgs hypothesis (H1) is considered exclusion. 

In order to explain the different methods for testing a hypothesis we have generated 
toy Monte Carlo (MC) simulations of data with and without the Higgs signal. 
 

 2. The Discovery Case 

 2.1 The Toy Model 

We assume a Gaussian higgs signal (s) on top of a Rayleigh shaped background (b) 
Let µ denote the signal strength with the expectation of the data being n s bµ= + 1

~n s bµ +

.  
µ =1 for the SM higgs (H1), and µ =0 for background only (H0). The background is 
either known from MC with some systematic uncertainty or could be measured with a 
control data sample. Since any uncertainty on the predicted background can be taken 
into account by using it as an artificial measurement, we assume two hypothetical 
measurements; one for the data which might include the Higgs boson, i.e.  
depending on nature, and another one using a data control sample which contains no 
signal, ~m bτ with τ being the scaling factor between the prospective signal and the 
background-only regions (see Figure 1).  

 
Figure 1: The Rayleigh shaped background control sample (left) and the simulated data containing a 

Gaussian signal (right). b̂ and 
ˆ̂b  are MLEs explained in the text. In this example the assumed “Higgs 

mass” is 50. 

In this non-trivial toy model the data sets are binned in histograms. The background 
is described by one parameter,θ, i.e. ( )b θ . The parameter θ determines the Rayleigh 

                                                 
1 Note that we use a simplified notation for the data, n, and the signal and background, s and b. Each one is 

actually a binned distribution. 
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distribution. Although, the histograms are binned, we use a symbolic notation. The 
Likelihood for ( )s b θ+ is given by  

 ( ) ( ) ( )
1

, | ( ) ; ( ) ; ( )
nbins

i i i i i
i

L n m s b Poisson n s b Poisson m bθ θ τ θ
=

+ = + ⋅∏  (1.1)     

The Likelihood can be maximized with respect to θ.  The Maximum Likelihood 
Estimator (MLE) for the background is denoted by ˆ ˆ( )b b θ≡ , while the conditional 

MLE, under the assumption of No-Signal (µ=0) is denoted by ˆ ˆˆ ˆ( )b b θ≡ . 

 2.1.1 Systematics or Nuisance Parameters 

The background, b(θ), has an uncertainty which has to be taken into account via a 
real or virtual measurement.θ is called a nuisance parameter (which we associate with 
background systematics). The simplest way to include the systematics is profiling via 
MLEs (see  2.2.3). A popular way is using marginalization known as the Cousins-Highland 
hybrid way[1]. The Likelihood (1.1) is integrated in a Bayesian manner using a flat 
prior in θ, ( )π θ . 

 ( ) ( )( ) , | ( ) ( ) ; ( ) , | ( ) ( )L s b L n m s b d L b L n m b dθ π θ θ θ π θ θ+ = + =∫ ∫  (1.2) 
 

 2.2 The Likelihood Ratio (LR) CLb method. 

 2.2.1 The Neyman-Pearson Lemma 

The basis for the Likelihood Ratio method is the Neyman-Pearson lemma[2]. It 
states (in a layman’s language) that when performing a hypothesis test between two 
simple hypotheses, H0 and H1, the LR test, which rejects H0 in favor of H1 is the most 

powerful test. The test statistic is therefore defined as 1 1

0 0

( ) ( | )
( ) ( | )

L H L H x
L H L H x

Λ = ≡  where x 

symbolizes the data. Note thatΛ is data dependent even though it is usually not 
specified. 

 2.2.2 The Frequentist LR (CLb) Method 

Following the above discussion, a test statistic is defined as  

( )
( )

1

0

( )
( )

L s bL H
L H L b

+
Λ = =  (1.3) 

 
One now generates the pdf of Λ under H0 (b-only) and H1 (s+b). If obsΛ is the result of 
one experiment (by experiment we mean e.g. the LHC or the TEVATRON), one 
calculates the probability to get an observation which is less b-like than the observed 
one. This probability is called the p-value. Figure 2 illustrates the pdf distributions and 
the p-value. 
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Figure 2: The pdf of the LR distribution under H0 (red) and H1 (blue) with the LR test statistic, Λ . The 

red area is the p-value corresponding toΛobs .  

If the result of the experiment (LHC) yields a p-value< 2.8·10
-7

 a 5σ discovery is 
claimed (this is a convention motivated by Gaussian shaped pdf)2

Note that the p-value can be interpreted as a frequency; hence, this is a frequentist 
approach.   

. 

 2.2.3 The Profiled LR CLb way 

The background systematics can be taken into account by either marginalization of 
the nuisance parameter θ  (see Eq. (1.2)) or by profiling. 

Let ˆ̂
s bθ + be the MLE of θ under H1. Let b̂θ be the MLE of θ under H0.  

The test statistic is defined as  

 
( )

1

0

ˆ̂, | ( )( )
ˆ( ) , | ( )

s b

PL
b

L n m s bL H
L H L n m b

θ

θ

+
 + 
 Λ = =  (1.4) 

We can now estimate the expected sensitivity of an experiment by generating MC 
experiments and calculate the p-value equivalent significance for each one. The 
expected sensitivity is defined as the median of the significance distribution (see Figure 
3 ). This sensitivity can be approximated by using one representative data set, called the 
Asimov data set3 n s b= +[3] which is the expected s+b (for the data measurement, set ) 
and the expected control sample measurement  ( m bτ= ) with no statistical fluctuations. 

                                                 
2 In LEP days this p-value was wrongly expressed in terms of the background 

confidence level (CL), i.e. p=p0=1-CLb. 
3 The name of the Asimov data set is inspired by the short story Franchise, by 

Isaac Asimov. In it, elections are held by selecting a single voter to represent the entire 
electorate. 
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Figure 3: The distribution of the significances obtained with s+b MC experiments in the profile LR 

CLb method. The green and yellow bands indicate the 1σ and 2σ significance bands. The median and 
Asimov significances are indicated. Note, the toy signal is assumed to be with a mass of 50 GeV (mH=50). 

The significance can be calculated for each assumed fixed Higgs mass. Figure 4 
shows the sensitivity of the experiment as a function of the Higgs mass. One can see 
that in this experiment the Higgs is expected to be discovered (significance>5σ) if its mass 
is mH<32 or mH>52. To clarify the meaning of this, the correct statement is that if the 
Higgs is in the above quoted mass ranges, it will be discovered in 50% of hypothetical 
experiments (i.e. there is a 50% chance of claiming a 5σ discovery claim). 

 
Figure 4: The expected significance as a function of the Higgs mass. The green and yellow bands are 

the 1σ and 2σ bands. 

 2.2.4 The Profile Likelihood Ratio method (PLR) 

While likelihood ratio defined in Equation (1.4) tested the s+b hypothesis with 
respect to the b-hypothesis, the PL ratio method[4] tests the Hµ hypothesis with respect 
to the best hypothesis, preferred by the data, i.e. the one with ˆµ µ=  . So we test H1 (or 
H0) with respect to ˆHµ , and let the data determines the best alternate hypothesis. 

Therefore we test the Hµ hypothesis using the following test statistic 

 
( )

ˆ̂( ( ))
2 ln ( ); ( )

ˆˆ ( )

L s b
q

L s b
µ

µ θ µ
λ µ λ µ

µ θ

 ⋅ + 
 = − =

⋅ +
 (1.5) 

mH=50 
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ˆ̂( )θ µ and θ̂  are the MLEs defined in section  2.2.3. The presence of the nuisance 
parameter (θ) broadens the profile likelihood ratio as a function of μ relative to what one 
would have if their values were fixed. This reflects the loss of information about μ due 
to the systematic uncertainties. 

In order to establish a discovery we try to reject the H0 hypothesis. The test statistic 
is therefore 0 2 ln (0)q λ= − .  

We can follow the same procedure of toy MCs and derive the p-values. The resulting 
discovery sensitivity is shown in Figure 5 (dash line).  

 
Figure 5: The discovery sensitivity of the PL ratio (dash line) compared with that of the LR CLb 

method (full line). 

It is compared with the Profiled CLb sensitivity (full line), and shows slightly less 
sensitivity. We believe that even though the Neyman Pearson Lemma does not fully 
apply here (since we are not dealing with simple hypotheses) it suggests that the LR 
Profiled CLb  (Eq.(1.4)) may still be close to optimal.  

So why use a method which is a bit less sensitive? The reason is its unique 
characteristics expressed by Wilks theorem[5]: Under a set of regularity conditions and 
for a sufficiently large data sample, the pdf of the statistic q

0
=-2lnλ (μ) approaches the 

chi-square pdf for one degree of freedom for a hypothesized value of μ. In particular the 
pdf of q0

 
approaches a chi-square distribution with one d.o.f. for b-only experiments 

(H0). So in order to calculate a p-value of some qobs one does not need to perform over 
109 toy MC experiments, but simply calculate the significance Z given by the following 
relationship 

 2 ln ( 0 | )obs obs obsZ q xλ µ= = − =  (1.6) 
Moreover, to calculate the median significance one generates the Asimov data set 

xA=s+b and calculate ZA in a straightforward manner. This can save hundreds of hours 
of computing time. 

Figure 6 shows the pdf of the PL discovery test statistic for b-only experiments 
(blue), which indeed approaches a chi squared, for s+b experiments (red), and compares 
the median with the Asimov expectation. The corresponding expected significance in 
this toy example is 2 ln (0 | ) 27 5.2med A A AZ Z q xλ σ= = = − = = . 
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Figure 6: the pdf of the PL discovery test statistic for b-only experiments (blue), for 

s+b experiments (red). A chi squared line is also drawn and the median and Asimov 
sensitivities are indicated.  

 2.2.5 The Bayes Factor and the Frequentist significance 

In a Bayesian approach one tests a hypothesis based on the one experimental 
observation using priors. Some consider priors to be the weakness of Bayesian statistics. 

The posterior for the hypothesis Hi is given by 

 ( | ) ( )( | )
( )
i i

i
L x H HP H x

P x
π

=  (1.7) 

where x is the data, and ( )iHπ is the prior for the hypothesis Hi. To claim an evidence 
of H1 over H0 (a discovery) one defines the Bayes factor B10 [6] as the ratio of the 
posteriors to priors odds, i.e. 

 1 0
10

1 0

( | ) ( | )
( ) ( )

P H x P H xB
P H P H

= . (1.8) 

 
Integrating over the nuisance parameters with priors ( )π θ we find 

 
( )

( )10

, | ( ) ( )
( )

, | ( ) ( )

L n m s b d
B

L n m b d

µ θ π θ θ
µ

θ π θ θ

⋅ +
= ∫

∫
 (1.9) 

 
and integrating over the signal strength µ with a prior ( )π µ we find that the Bayes 
factor is given by 

 
( )

( )10

, | ( ) ( ) ( )

, | ( ) ( )

L n m s b d d
B

L n m b d

µ θ π µ π θ θ µ

θ π θ θ

⋅ +
= ∫∫

∫
 (1.10) 

We therefore find that for flat priors, ( )π θ , which are very common (not necessarily 
justified) in HEP, 

 
( )

( )10

( ) , | ( )

, | ( )

d L n m s b d
B

L n m b d

µπ µ µ θ θ

θ θ

⋅ +
= ∫ ∫

∫
 (1.11) 
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One can show, using the saddle point approximation, that for a flat prior in θ  

( )
( )

( )

( )

ˆ̂log ( )log ( )

10 log ( 0) ( ) ˆ̂log ( 0) ( 0)

( ) ( )( )
(0)( 0) ( )

L s bL s b

L s b L s b

L s b d e d eB
L s b d e d

e

µ θ µµ θ

µ θ µ θ µ

µ θ θ θ λ µµ
λµ θ θ θ

  ⋅ +  ⋅ +    

= ⋅ +   = ⋅ + =    

≈
⋅ +

= = =
= ⋅ +

∫ ∫
∫ ∫

 (1.12) 
This relationship between the Bayes factor and the frequentist PL ratio, though 
disturbing in the first place, is not surprising when you come to think about it. Wilks 
theorem ensures that using the PL ratio you do not need to perform any toy MC 
experiments to tell a significance of an observation based on the one observed data set. 
This is also the characteristics of a Bayesian hypothesis test. Actually we have tested 
Eq. (1.12) on our assumed Higgs sample and found out an extraordinary agreement 
(Figure 7) 

 
 

Figure 7: The Bayes factor B10(µ) (blue) and the PL ratio (red). The agreement is perfect. 

It is now straightforward to show that with a flat prior in θ  

 
10 10

10

1( ) ( ) ( ) ( )
(0)

log log (0) log ( ) ( ) log (0)

B B d d

B d C

µ π µ µ λ µ π µ µ
λ

λ λ µ π µ µ λ

= ≈

≈ − + ≈ − +

∫ ∫

∫
 (1.13) 

To evaluate C we can plug in 

2

2
ˆ( )

2( ) e µ

µ µ
σλ µ
−

−

≈ . The median significance is obtained with 
the Asimov s+b data, i.e. ˆ 1µ = . For this data set we find 

 
2

1
2 1 1ˆ(0 | 1)

ˆ2 ln (0 | 1) A

e
Z

µσ
µλ µ σ

λ µ

−

= ≈ ⇒ ≈ =
− =

 (1.14) 

If we take an improper flat prior for , ( ) 1µ π µ =  we can approximate the integral 
(for Z>1) to be  

 
0

2ln ( ) ( ) ln 2 ln
A

C d
Zµ
πλ µ π µ µ πσ

∞
= ≈ =∫  (1.15) 

and therefore for the Asimov s+b deta we get that the expected Bayes factor is related to 
the frequentist significance via  
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2

10
2ln ln

2
A

A

ZB
Z
π

≈ +  (1.16) 

  
Eq. (1.16) can be used to relate the Bayes factor to the frequentist significance. For 
example, the 3σ observation and 5σ discovery are equivalent to a Bayes factor of 

10 ~ 100B  and 10 ~ 30000B  which are traditionally considered by Bayesians as an 
evidence and a very strong evidence (discovery). 

 2.2.6 The Look Elsewhere Effect or The Floating Higgs Mass Case 

In all the examples shown so far, the alternate hypothesis was a Higgs Boson with a 
fixed mass mH. One could also pose a different alternate hypothesis, i.e. a Higgs boson 
with some mass mH in a given mass range. 

The sensitivity will be reduced because the probability for the background to 
fluctuate and mimic a signal anywhere in the mass range (“elsewhere”) is much bigger 
than its probability for such a fluctuation at a given mass. 

To quantify the look elsewhere effect one defines the trial factor which is the ratio of 
the p-values of the floating mass hypothesis and the fixed Higgs mass hypothesis, i.e.  

 # float

fix

p
trial

p
=  (1.17) 

It is tempting to estimate the trial factor as the ratio between the search range and the 
mass resolution ( /

HmσΓ ), but one has to be careful not to do it. It is wrong. 
To calculate the p-value under the floating mass hypothesis one can use the PL ratio 

with two parameters of interest, the signal strength µ, and the Higgs mass mH,  

 
( ) ( )

( 0) ( 0)
ˆ ˆˆ ˆ( ) ( ) ( )

( , ) ; ( 0)
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

H

H
H H

L s m b L b
m

L s m b L s m b

µ µµ θ θ
λ µ λ µ

µ θ µ θ

= =
   ⋅ +   
   = = =

⋅ + ⋅ +
 (1.18) 

Strictly speaking, Wilks theorem does not apply here. However we have seen that the 
test statistic pdf under b-only experiments (H0), distributes approximately as a chi 
squared with two degrees of freedom. This can be seen in Figure 8 below. 
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Figure 8: The pdf of the discovery test statistic under b-ony experiments (blue) and under s+b 

experiments (red). Also shown is a Chi squared distribution with two degrees of freedom and the median 
sensitivity. 

A comparison between the fixed and floating mass sensitivities and the trial factor as 
a function of the Higgs mass is shown in Figure 9. Note the reduced sensitivity of the 
floating mass sensitivity due to the look elsewhere effect. Note also that the trial factor 
cannot be estimated by the above mentioned rule of thumb ( # ~ /

Hmtrial σΓ ). 

 
Figure 9: The Profiled LR significance for the fixed Higgs mass (dash blue), floating mass (blue) and the 

trial factor (dash green). 
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3. The Exclusion Case 

 3.1 The Toy Model 

In order to announce a discovery one requires to reject the H0 hypothesis at the level 

of 5σ, which means that the corresponding p-value should be < 2.8·10
-7

. The 
requirements for exclusion are less stringent. It is custom to announce an exclusion of 
the H1 hypothesis if one manages to reject it at the 95% confidence level. This 
corresponds to a (one sided) p-value of 5%, or a corresponding Gaussian significance of 
~1.64σ (which is equivalent to a 2-sided p-value of 10%).  To demonstrate the exclusion 
statistical methods we used a similar toy model to the one described in section  2.1 except 
that the signal strength was reduced in order to make the exclusion procedure more 
challenging and realistic. An example of some exclusion toy models is shown in  
Figure 10. 

 

 
Figure 10: Exclusion toy MCs: The Gaussian shaped signal on top of the Rayleigh shaped 

background for m=20,50,80. b̂ and 
ˆ̂b  are MLEs. 

 

 3.2 Exclusion using the Profile Likelihood ratio 

The test statistic is given by Eq. (1.5) with µ=1, i.e. q1.   We test the s(mH)+b 
hypothesis. Following Wilks theorem, q

1
 distributes as a χ2 with one d.o.f. under 

s(m
H
)+b experiments (H

1
). The exclusion significance can be easily calculated via  

 1 2 ln ( 1| )obs obsZ q xλ µ= = − = . (1.19) 
  
It is a custom to express it in terms of exclusion Confidence Level of the s+b  

( 1 s bCL CL +≡ − ) which is related to the observed p-value via 
 1 1s bp p CL+= = − . (1.20) 
Note that a significance of 1.96σ corresponds to exclusion at the 97.5% CL, while a 

significance of 1.64σ corresponds to exclusion at the 95% CL.  
The exclusion sensitivity is the median CL, which can be obtained using toy MCs or 

via the Asimov data set which is the expected background in this case (n=b).  
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The exclusion sensitivity as a function of the assumed Higgs mass is shown as the 

full blue line in Figure 11. Since 1-CL is below the 5% in all of the search range, the 
Higgs is excluded in all of the mass range with >95% CL. 

 
Figure 11: The expected exclusion sensitivity for the PL ratio (blue), CLs (top red dash) and CLs+b 

(bottom dash red) methods as a function of the Higgs mass. The green and yellow bands are the 1σ and 
2σ bands for the PL ratio method. The region below the 95% CL line is excluded at >95% CL. 

 

 3.3 A Bayesian Exclusion 

The signal strength µ can be interpreted as the ratio between the observed Higgs 

production cross section and the expected (SM) one, i.e. 
SM

σµ
σ

= . Bayesians will set an 

upper limit on the signal strength by calculating the credibility interval [0,µ
95

] where µ
95 

is calculated by integrating the posterior probability for µ, i.e. 
 95

0
0.95 Pr ( | , )ob n m d

µ
µ µ= ∫  (1.21) 

The posterior probability is calculated by integrating the likelihood using priors for 
the signal strength, ( )π µ , and the background ( )b θ , ( )π θ , i.e. 

 
( )
( )

, | ( ) ( ) ( )
( | , )

, | ( ) ( ) ( )

L n m s b d
prob n m

L n m s b d d

µ θ π µ π θ θ
µ

µ θ π µ π θ θ µ

⋅ +
=

⋅ +
∫

∫∫
 (1.22) 

Note that the pdf of the posterior is based on the one observed experimental result 
with the likelihood integrated over the nuisance parameters. The posterior pdf with flat 
priors, is shown in Figure 12 for the Asimov data set, n=b. The credibility interval, 
[0,µ

95
] , can be easily found from the posterior probability distribution by integration up 

to an area of 95%. In this example, flat priors were used and the SM Higgs is not 
excluded since µ95=1 is included in the credibility interval. One will interpret the 
credibility interval by stating (though it’s a wrong jargon) that µ<1.14 at the 95% CL. 

Even though there was no need for toy MC experiments to determine the credibility 
interval for a given experimental outcome, one needs to generate toy b-only MC 
experiments (each representing e.g. the LHC) to determine the expected exclusion 
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sensitivity. The distribution of µ95 in toy MC experiments for some assumed Higgs 
mass, is shown in Figure 12.  

 
Figure 12: The posterior distribution as a function of the signal strength µ for the Asimov data set 

(n=b). The credibility interval in this example is [0,1.14]. 

 
The median and Asimov expected sensitivities coincide (µA=µmedian=1.14 in this 
example) and the 1σ and 2σ bands are indicated by the green and yellow bands.  

 
 

 
Figure 13: The µ95 distribution in toy b-only experiment. The 1σ and 2σ bands are indicated by the 

green and yellow bands. The expected median coincides with the Asimov sensitivity, µ95=1.14. 

The expected Bayesian µ95 for various assumed Higgs masses is shown in Figure 14 
(solid blue line). We find that the credibility interval [0,µ

95
] does not contain µ95=1 (SM 

Higgs) for mH<28 or mH>61. This is sometimes wrongly expressed as an exclusion of 
the Higgs boson with the above quoted masses at the 95% CL. Also shown in Figure 14 
is the 95% CL PL ratio exclusion sensitivity (dash red triangles) and the 97.5% CL PL 
ratio exclusion sensitivity (dash red circles).  It is noticeable that the 95% Bayesian 
exclusion and the 97.5% CL PL exclusion coincide. We try to explain it in the next 
subsection. 

 3.4 Bayesian Exclusion and the PL Ratio 

The dedicated Bayesians or Frequentists will say it’s a blasphemy to try and find a 
connection between the two approaches as we attempted to do in section  2.2.5. However, 
though, comparing oranges to apples  
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Figure 14: The expected µ95 sensitivity as a function of the Higgs mass in the Bayesian way (solid 

blue), the PL (at the 95% CL, bottom dashed red line)and the PL (at the 97.5% CL, top dashed red line). 

make no sense, the coincident between the expected PL Ratio and Bayesian exclusions 
shown in Figure 14 led us to further investigation. If we plug in flat priors in the 
posterior, Eq. (1.22) we find using the saddle point approximation 

 
( )
( ) ( )

ˆ̂ln ( )

ˆˆln ( )

, | ( )
( | , ) ( | , )

, | ( )

L s b

L s b

L n m s b d eprob n m n m
L n m s b d d e

µ θ

µ θ

µ θ θ
µ λ µ

µ θ θ µ

 ⋅ + 
 

⋅ +

⋅ +
= = =

⋅ +
∫
∫∫

 (1.23) 

Plugging in the b-only Asimov data sets, n=m=b, we find  ˆ 0µ = and therefore 

 

2

2
2

2
2

ˆ( )2 lo g ( ) ~ ; ( | ) ~ ( ) ~prob n m b e µ

µ
σ

µ

µ µλ µ µ λ µ
σ

−−
− = =  (1.24) 

For the Asimov b-only data we find 1~
2log (1| )n m bµσ λ− = =

 

This is exactly the normalized shape seen in Figure 12. If we define 95µ as in Eq. (1.21)
we find the following equivalence  

 95

97.50
0.95 Pr ( | , ) 2 log ( ) 1.96ob n m d

µ
µ µ λ µ= ⇔ − =∫  (1.25) 

Meaning, that one has to identify the Bayesian 95µ with the frequentist PL CL of 97.5%, 
i.e. 97.5µ . This is a result of thinking 5% one-sided or 5% two-sided…. This is exactly 
the equivalence we observe in Figure 14.   
  

 3.5 The CLs+b Method 

Following the discussion in section  2.2 we use the LR as a test statistic (Eq. (1.3)). To 
take systematics into account we can either integrate it out (Eq. (1.2)) or profile it (Eq. 
(1.4)) . However, in this case the tested hypothesis is the s+b hypothesis (H1), so in 
order to reject this hypothesis we calculate the observed s+b Confidence Level (CLs+b) 
which is equivalent to the observed ps+b and require that it is less than 5%. Figure 15   
shows the test statistic pdf under b-only (red) and s+b (blue) hypotheses. The s+b  
p-value is indicated. 
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Figure 15: The LR test statistic pdf for b-only (red) and s+b (blue) experiments. The p-value is 

indicated. 

 3.6 The Modified Frequentist CLs 

The CLs+b method tests the s(mH)+b hypothesis. If one excludes it, one excludes the 
s(mH)+b hypothesis for a Higgs with a mass mH. The subtlety here is that a downward 
fluctuation in the background might lead to an exclusion of a signal to which one is not 
sensitive (with a very low cross section). For a given observation, obsn b< , the 
probability to observe even less events is given by 1 bp− . To protect against such 
fluctuations CLs+b was modified and CLs was defined [7] 

 ( )~
1 ( )

s b s b obs
s b s

b b obs

CL p p n s bCL CL
CL p p n b

+ +
+

≤ +
→ ≡ =

− ≤
.  (1.26) 

Statisticians do not like this p-value ratio because it does not provide a frequentist 
insight. However, some physicists insist on it since physics-wise it is conservative in a 
sense of coverage. Meaning, an observation might lead, using the CLs+b criteria,  to an 
exclusion of the s+b hypothesis in 5% of toy s+b experiments, but it will be excluded in 
<5% of the times, if one uses the CLs criterion. This is clearly seen in Figure 16 where 
1-CL is plotted vs. the assumed Higgs mass. The Higgs is excluded in all the measured 
mass region using the PL ratio or its almost equivalent CLs+b method, yet, using CLs the 
exclusion sensitivity is reduced and one can only exclude the Higgs if its mass is 
30<m<60 . In that sense the CLs method is conservative, yet, quoting its result does not 
have any statistical clear frequentist interpretation. 
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Figure 16: The expected 1-CL exclusion for the PL method (blue) with its 1σ (green) and 2σ (yellow) 

bands, the CLs+b (dashe red circles) and CLs (top dash red squares) as a function of the Higgs mass. 

 4. Conclusions 

We have explored and compared all the methods to test hypotheses that are currently 
in use in the High Energy Physics market (PL ratio, CLs+b, CLs and Bayesian). We have 
shown a way to appreciate the Bayes factor by comparing it to the PLR. We have shown 
equivalence between the Bayesian exclusion with flat priors and the frequentist PL 
ratio. All methods tend to give similar sensitivities whether one integrates out the 
nuisance parameters or profile them. 

Even though we have used non trivial typical case studies, we suggest that with  real 
data all available methods be explored. 
     One of us (E.G.) is obliged to the Benoziyo center, to the the Israeli Science Foundation (ISF),
 the Minerva Gesellschaft and  the German Israeli Foundation (GIF) for supporting this work.
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