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We review how theoretical constraints from dispersion relations imposed on amplitudes fitted to

ππ experimental data significantly help in the determination of these amplitudes below 1 GeV.

These constraints lead to scalar amplitudes with thresholdbehavior in agreement with Chiral Per-

turbation Theory predictions and allow for a very precise determination, from data, of the position

of the f0(600) (sigma) pole in the complex energy plane. In this short report we concentrate on

dispersion relations with crossing symmetry constraints.We explain how their errors propagate

and we compare how twice and once subtracted dispersion relations (the Roy’s and GKPY equa-

tions respectively) constrain theππ amplitudes. We conclude that the latter ones provide a more

stringent consistency check for our parameterizations of the ππ amplitudes above around 450

MeV. We show that these once-subtracted dispersion relations, together with forward dispersion

relations (FDR) and sum rules (SR), lead to precise determinations of theππ partial wavesJI =

S0, S2 andP below 1 GeV. Our data analysis is model independent and basedonly on unitarity,

analyticity and crossing symmetry.
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dispersion relations can lead to a precise description ofππ scattering Robert Kamínski

1. Comparison of the Roy’s and GKPY equations

The idea of implementing the crossing symmetry condition into the twice subtracted dispersion
relations in the description ofππ → ππ scattering amplitudes was formulated and applied for the
first time by Roy in 1971 [1]. This set of coupled dispersion relations has been used later in order to
eliminate the long standing "up-down" ambiguity in scalar-isoscalarππ amplitudes below 1 GeV
[2]. Recently, several other analyses ofππ scattering have appeared [3, 4] combining different
model independent approaches and data.

In the series of papers [4], a careful analysis ofππ amplitudes for many partial waves (from
S to G with isospin 0, 1 and 2) fitted to old and new data sets (e.g. to data fromKe4 decays [5]),
to FDR, several SR and the Roy’s equations was presented. It was shown that these constraints
on the data allow for precise predictions of threshold parameters, phase shifts up to the two-kaon
threshold, and the sigma (f0(600) meson) pole position.

Continuing our work on the dispersive analysis of theππ amplitudes, our preliminary results
[6] show that once subtracted dispersion relations (GKPY equations) can be very helpful in the
analysis of theππ amplitudes. Both Roy’s and GKPY equations can be expressed as a sum of so
called subtracting, kernel and driving terms (ST, KT andDT respectively - for details see [4]). The
main difference between these two sets of equations is inST, which for the Roy’s equations are
first order polynomials in thes variable, whereas for GKPY eqs. are constant. The values of these
two ST terms are given by combinations of the scattering lengths for theS0- andS2-waves.

In Figure 1 we show the real part of the amplitudes obtained from the Roy’s and GKPY equa-
tions (called "out") together with the corresponding real part of the amplitudes coming intoST, KT
andDT (called "in"). In our calculations we minimize the difference between the input and output
amplitudes for theS0, S2 andP waves below 1 GeV. It is clearly seen that above abouts1/2 = 400
MeV the errors of the GKPY equations are significantly smaller than the errors of the Roy’s equa-
tions. This monotonous increase of the latter ones is causedmainly by the linear propagation of
the errors from the scattering lengths inST.

The continuation of the amplitudes into the complex energy plane allows us to calculate the
position of the sigma pole. Our preliminary values are 459+36

−33− i257+17
−18 MeV from Roy’s equations

and 461+14.5
−15.5 − i257±16 MeV from GKPY. Although the central values may change in our final

results it is evident that errors are considerably smaller when obtained from GKPY equations.
Preliminary values for scattering lengths are (in pion massunits) 0.223± 0.009 for the S0 wave
and−0.0444±0.0045 for theS2.

One can therefore use both types of equations (together withFDR and SR) to constrain the
studiedππ amplitudes and extract precise physical observables related to meson spectroscopy.
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Figure 1: ‘In” amplitudes (dashed lines) versus “out” amplitudes (continuous lines). The “in” amplitudes
correspond to a data fit on which FDR, SR, Roy’s eqs. and GKPY eqs. are imposed within errors. The
“out” amplitudes are obtained using the “in” amplitudes inside Roy’s eqs. (left panel) and GKPY eqs. (right
panel). The shaded bands cover the uncertainties in the difference between “in” and “out” amplitudes.
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