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a(—s\/€(p+ b)2 + ¢, wherea, b andc are arbitrary constants,= +1, andG is Newton'’s con-
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Quasiblack holes with pressure

1. Introduction

It was Weyl while studying electric fields in vacuum Einstdiaxwell theory who first per-
ceived that it is interesting to consider a functional lielatbetween the metric componegt =
W?2(x') and the electric potentigh(x ) (wherex represent the spatial coordinates; 1,2,3) given
by the ansat®V = W(¢). By assuming the system is vacuum and axisymmetric, Weylddhat
such a relation must be of the fovid? = (—s\/§(p+ b)2 + ¢, whereb andc are arbitrary con-
stants,e = +1, G is Newton’s constant, and we use units such that the spegghtElquals unity.
The corresponding spacetime metric may be written as

de = —W2dt? +- hyjdxXd¥,  i,j=123, (1.1)

wherehy; is also a function of the spatial coordinatés One can go beyond vacuum solutions,
and consider fluids which obey the Weyl relation, obtainimgitproperties, see [1] for the original
references, including the works of Majumdar and Papapetiaustudied a perfect square relation-
ship betweeW and . An interesting development on Weyl's work was performed3duyifoyle

[2] who considered charged fluid distributions with the hyyesis that the functional relation be-
tween the gravitational and the electric potentfdl= W (@), is slightly more general than Weyl’s.
This Weyl-Guilfoyle relation has the form

sza(—£\/§<p+b)2+c, (1.2)

wherea is another arbitrary constant. Guilfoyle [2] investigatsVeral general properties of such
matter systems, which we call Weyl-Guilfoyle fluids. In geaiethese fluids have electrical charge
and pressure.

Drawing upon Guilfoyle’s work we further construct a retetship between the various field
and matter quantities [3], in much the same way as GautredwHaffman [4] have done for flu-
ids obeying a pure Weyl relation. Furthermore, in the vemasavork, Guilfoyle [2] found that
Weyl-Guilfoyle fluids, under a static spherically symmetassumption, exhibit interesting solu-
tions which can be matched to the electrovacuum Reissnedsiém spacetime, yielding global
asymptotically flat solutions, i.e., charged stars withsptee. We explore one particular class of
those spherically symmetric charged fluid stars and shotnthies display quasiblack hole (QBH)
behavior, i.e., the matter boundary approaches its owrztoin a well behaved manner [5]. So,
for the first time, a QBH with pressure is exhibited. QBHs pusipported by electrical charge
are known, see [6] and references therein. The presencessipe in QBH solutions is important,
since it tends to stabilize the system.

2. Weyl-Guilfoyle fluids and their properties

To study some properties of Weyl-Guilfoyle fluids we assulra the spacetime is static and
that the metric can be written in the form of equation (1.1ijhw1.2) holding. The gauge field,
and the four-velocity of the fluith, are then given by, = —@32 andU, = —W &3 Then, from
the Einstein-Maxwell equations one finds that the metrieptal W and the electric potentiap
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satisfy the following equations,
2 1 1
D'W =4nGW | pm+ 3z P+pPem ),  Li| 75U @) =—47pe, (2.1)

N2
where we have defined the electromagnetic energy depsitpy pem = 1 (Gi9)

, with [J; de-
) 4 W2
noting the covariant derivative with respect to the coatix', whose connection coefficients are
given in terms of the metrity;. The two equations in (2.1) may be combined to produce the

following relation

Oi (% 0" W2 —ad? +-c]) = 811G [(om+ 5 p+ (1 — @) pem) W — £2pe®] , (2.2)

where® is given by® = —/G@+b, anda, b andc are arbitray constants. On basis of this
equation the following theorem can be stated.

Theorem 1.Lemos and Zanchin (2009)
() In any Einstein-Maxwell charged pressure fluid, if thetriteand electric potentials are such that
W2—a(—eVGo+ b)2 — cvanishes everywhere, then the fluid quantities satisfy timstcaint

1
abpe =£vG [(pm+§p>w+ Ppe+ (2— 1) (PP —Wpem) | - (2.3)
(if) Conversely, in any Einstein-Maxwell charged presdiui, if the fluid quantities are such that
equation (2.3) holds and there is a closed surface, withngukirities, holes, or alien matter inside
it, wherew? — a(—sx/§(p+ b)2 — cvanishes, then it vanishes everywhere inside the surface.

Proof. The proof of this theorem is given in [3] for d-dimemsal spacetimes, and will not be
reproduced here. Of course it also holds fet d.

As we can see, Theorem 1 gives an explicit relation among tie duantities which satisfy the
Weyl-Guilfoyle relation (1.2), and so it can be considerscaa equation of state satisfied by the
charged fluid with pressure. Earlier, Gautreau and Hoffrddrh@d investigated the structure of
the sources that produce Weyl type fields which satisfy thgl \gleadratic relation (i.e., equation
(1.2) wita = 1), in the case the matter has stresses, i.e., the presdaraest vanish. They found
that the fluid obeys the conditidnpe = £v/G [(pm—+ 3 p) W + @pe|. Comparing our theorem to
the theorem by Gautreau and Hoffman [4] we see that in theilyais only the binding energy
was taken into account, and hence the constanas forced to be equal to unity. Our theorem
generalizes thus the Gautreau-Hoffman theorem.

3. Spherical solutions and quasiblack holes with pressure

3.1 The solution

Given an ansatz of the type (1.2) one is tempted to find exdcticos with matter. This is
what Guilfoyle [2] has done by assuming spherical symmatnpreg other things. Guilfoyle has
found several classes of solutions of charged matter wighgure. Furthermore, all the solutions
found by Guilfoyle in [2] obey the constraint provided by atjon (2.3), see [3]. When matched to
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the Reissner-Nordstrom exterior solution, the exact snistfound in [2] yield charged stars with
pressure.

In order to display a particular class of Guilfoyle’s sotuts one writes the metric in the
spherically symmetric form

ds = —B(r)dt? + A(r)dr® +r%dQ, (3.1)

wherer is the radial coordinate? andB are function ofr only, anddQ is the metric of the unit
sphereS?. This form of the metric is more useful to explore the phylsjmaperties of the sys-
tem than the form given in equation (1.1). The charged presuid is bounded by a spherical
surface of radius = rg, and forr > ro the metric and the electric potential are given by Reissner-
Nordstrém solutiond? = — (1— 204 &) dt2 + (1— m ?—;) "dr2 4 12dQ, and g = T+ w,
with ¢ being an arbitrary constant which defines the zero of thetredgootential, and that, in
asymptotically Reissner-Nordstrdom spacetimes as we densiere, can be set to zero. Here
m and g are the mass and charge at infinity, respectively. Wipenm the solution is said ex-
tremal. The Guilfoyle’s solutions are found under the agstions that the effective energy den-
sity pet(r) = pm(r) + Q?(r)/(8mr?) is a constant, and that the metric coefficiéit) is given
by A(r)~! = 1-r2/R?, R? being a constant. The solutions we are interested here isldhs la
solutions, in which the constant= 0. These solutions are given by [2]

2a/(a—2) 2
B0 = | s (oY 1IR—k) | A o1 52

3 Qr £\/a kord
w%mzﬁ—rp, szggmml_wm_w (3.3)
2,2
8p(r) = —— + —° ' L2d0a WI-TRE o

R (1gre i k) 2 ARRVITR K

whereky andk; are integration constants. These constants are deterfmynesing the continuity of
the metric potentialé\(r) andB(r) and the first derivative dB(r) with respect ta at the boundary
Ir =ro, and sdkg andk; are given in terms of, g andrg.

3.2 Quasiblack holes with pressure

Given the star solutions provided by Guilfoyle, equatioB)-(3.4), we now show some
properties of their metric, electric and matter fields, dwat tinder sufficient compactification the
charged stars turn into quasiblack holes (QBHs) with pmessao which the fields and matter are
regular everywhere. The presence of pressure in QBH sohitgonew.

In principle, the solution (3.2)-(3.4) is valid for all > 0, but there are some regions in the
domain of the parametex in which they are unphysical. An important quantity is theexp of
soundcs, because when compared to the other fluid quantities, it septhe strongest bounds on
the range of values af. We take the usual definition for the speed of sourdd= dp/dpm, and
consider variations of the pressys@nd of the energy densipy, in terms of the radial coordinate
r,i.e.,op=p'(r)or anddpm = p/,(r)dr. The final result yields the speed of sound as a function
of the radial coordinate. We find that it is well behaved andlten than the speed of light for the
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configurations for which the parametais in the interval 1< a < 4/3. Thus we study only star
and QBH solutions in the parameter region given by 4 < 4/3.

To show analytically that QBH solutions with pressure realtist we follow the definition of
QBHs given in [5]. A QBH is neither a usual regular spacetiagefor instance a star, nor a black
hole. Roughly speaking a QBH is an object on the verge of bawpen extremal black hole but
actually is distinct from it in many ways, for instance, ishaatter inside its own quasihorizon and
is regular everywhere. More precisely, according to thendt&fn in [5], for zero surface stresses (a
condition verified in the solutions above singe= 0 at the surface), the QBH should be extremal,
so thatm — q(1+ ), with very small non-negativé. Moreover, there must be a quasihorizon
r*, and then the radius of the stay must coincide withr*. As a consequence, we must have
m— gq— ro(1—9). In the present case, once we have ro(1— J), the boundary conditions at
r =roimply in m/q~ 14 (a—1)62/2a, and therm/ro ~ 1 — &. Taking these considerations into
account we find thaB(r) is of the order ofd2, for all r in the interval 0< r < ro. Moreover, we
find 1/A(ro) ~ &°. These conditions satisfy the properties of a QBH as defimgsl i

Now in possession of these results we can study numericallgtaresting typical case. We
choose here = 4/3 because, besides being typical, it is the case in whichpgbedsof sound
approaches the speed of light close to the surface of theérelapendently of how compressed the
star is. All other cases & a < 4/3 are also typical and have the speed of sound less than 1 at the
surface, the speed of sound being zerodes 1. We study star solutions and the corresponding
QBH limit. First we analyze the metric potentials, then thatter fields.

(i) The metric potentialB(r) and A(r) for the typical interesting case = 4/3 are shown
in figure 1. The exterior metric is Reissner-Nordstrém noetaind then the curves tend to unity
for large values of the normalized radial coordingtg. It is seen that for the quasi-extremal case
wherery/q = 1.00001, the QBH features show up. Naméy; ) — O for the whole interior region,
0<r <rgand Y/A(r) — 0 atr = ro.
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Figure 1: The metric potential8(r) and 3/A(r) as a function of the normalized radial coordinate, for
four values offf =rp/qin each graph. The cagk= 1, which givesg=m=rg, is a QBH.

(i) The matter fieldsoy, and p for the casea = 4/3 are shown in figure 2. The study of the
physical properties satisfied by these matter fields wasrindmae in ref. [2] (see figure 2). We
see that the pressure is always smaller than the energytydérsall ro/q > 1. The ratiom/q runs
from unity, at the QBH limit, to,/a for a extremely sparse star, with — . We also find that,
for the class of solutions we are discussing, i.e., thosevfich ¢ = 0, the boundary conditions
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Figure 2: The relativistic mass densipm(r), and the pressung(r) as a function of the normalizedq for
four different values o8 =ro/q.
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Figure 3: Two typical cases for the radial speed of sound as a funcfidtremormalized /q, for four values
of B =ro/q.

atr =rg give % =(1-a) %+ \/a [1+(a— 1) ?—g] . The maximum value om/q is in the limit

ro — oo and is given by%“ = y/a. Since we restrict the range of variation of the paramater
max

within the interval(1,4/3) the maximum possible value for the ratig/q is 2v/3/3. We can also
obtain analytic expressions for the fluid quantities likessmand charge densities and pressure in
the QBH limit, but we do not write such expressions here. Aalysis on the speed of sourgd

of these solutions is new and done now. The condition ¢hat well defined and smaller than
the speed of light guarantees, of course, further interggihysical properties for the solutions.
We restrict here our analysis for the QBH limit of these cledrgtars. In this limit the speed of

soundcs is given byc2 = ai:%ﬁ;ﬁg% — 1. The casea = 1 (andc = 0) corresponds to the
Majumdar-Papapetrou solutions, which have zero presdimes, as expected the speed of sound
of the QBH is zero whea = 1. At the surface¢? tends to—1+a/(2— a) which reaches unity for
a=4/3. The speed of sound at the center=(0) of the QBH is such that?(0) is bounded to-1
from below asa tends to zero. In fact we see th&{0) is zero fora = 1 and tends monotonically
to —1 asa goes to zero. Hences is undefined for ala < 1. The behavior of the speed of sound

inside the stars with = 4/3 anda = 1.2 can be seen in figure 3. As seen in the figureafer4/3
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the speed of sound approaches the speed of light close faeesof the star, independently of how
compressed the star is.

4. Conclusions

Charged matter systems with pressure present novel andstitgy features. A novel feature
is the beautiful simple relation (2.3) displayed by the fiedthd matter quantities. An interesting
feature is that when the matter is matched to a proper vacthencorresponding star solution,
under appropriate compactification, can turn into a QBH pisssure. The presence of pressure
in QBH solutions is new, and its importance comes from thetfat it tends to stabilize the system,
erasing thus the criticism against the possible existef€@Bds based on the previous solutions
without pressure (e.g., those solutions found in [6]).
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