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A class of electrically charged systems with pressure in general relativity arises when the grav-

itational potentialW2 and the electric potential fieldφ obey a relation of the formW2 =

a
(

−ε
√

G φ +b
)2

+c, wherea, b andc are arbitrary constants,ε = ±1, andG is Newton’s con-

stant. This relation generalizes the usual Weyl relation (for whicha = 1), and we call it the Weyl-

Guilfoyle relation. For both, Weyl and Weyl-Guilfoyle relations, the electrically charged fluid,

if present, may have nonzero pressure. Fluids obeying the Weyl-Guilfoyle relation are called

Weyl-Guilfoyle fluids which have very interesting features. In the present work we display some

new properties of Weyl-Guilfoyle fluids. These fluids, underassumption of spherical symmetry,

exhibit solutions which can be matched to the electrovacuumReissner-Nordström spacetime to

yield global asymptotically flat stars. We show that a particular spherically symmetric class of

stars found by Guilfoyle has a well behaved limit which corresponds to a quasiblack hole (QBH)

with pressure, i.e., in which the fluid inside has electric charge and pressure. The main physical

properties of such charged stars and QBHs with pressure are analyzed.
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Quasiblack holes with pressure

1. Introduction

It was Weyl while studying electric fields in vacuum Einstein-Maxwell theory who first per-
ceived that it is interesting to consider a functional relation between the metric componentgtt ≡
W2(xi) and the electric potentialφ(xi) (wherexi represent the spatial coordinates,i = 1,2,3) given
by the ansatzW = W(φ). By assuming the system is vacuum and axisymmetric, Weyl found that

such a relation must be of the formW2 =
(

−ε
√

Gφ +b
)2

+ c, whereb andc are arbitrary con-
stants,ε = ±1, G is Newton’s constant, and we use units such that the speed of light equals unity.
The corresponding spacetime metric may be written as

ds2 = −W2dt2 +hi j dxidxj , i, j = 1,2,3 , (1.1)

wherehi j is also a function of the spatial coordinatesxi . One can go beyond vacuum solutions,
and consider fluids which obey the Weyl relation, obtaining their properties, see [1] for the original
references, including the works of Majumdar and Papapetrouwho studied a perfect square relation-
ship betweenW andφ . An interesting development on Weyl’s work was performed byGuilfoyle
[2] who considered charged fluid distributions with the hypothesis that the functional relation be-
tween the gravitational and the electric potential,W = W(φ), is slightly more general than Weyl’s.
This Weyl-Guilfoyle relation has the form

W2 = a
(

−ε
√

G φ +b
)2

+c, (1.2)

wherea is another arbitrary constant. Guilfoyle [2] investigatedseveral general properties of such
matter systems, which we call Weyl-Guilfoyle fluids. In general, these fluids have electrical charge
and pressure.

Drawing upon Guilfoyle’s work we further construct a relationship between the various field
and matter quantities [3], in much the same way as Gautreau and Hoffman [4] have done for flu-
ids obeying a pure Weyl relation. Furthermore, in the very same work, Guilfoyle [2] found that
Weyl-Guilfoyle fluids, under a static spherically symmetric assumption, exhibit interesting solu-
tions which can be matched to the electrovacuum Reissner-Nordström spacetime, yielding global
asymptotically flat solutions, i.e., charged stars with pressure. We explore one particular class of
those spherically symmetric charged fluid stars and show that they display quasiblack hole (QBH)
behavior, i.e., the matter boundary approaches its own horizon in a well behaved manner [5]. So,
for the first time, a QBH with pressure is exhibited. QBHs purely supported by electrical charge
are known, see [6] and references therein. The presence of pressure in QBH solutions is important,
since it tends to stabilize the system.

2. Weyl-Guilfoyle fluids and their properties

To study some properties of Weyl-Guilfoyle fluids we assume that the spacetime is static and
that the metric can be written in the form of equation (1.1), with (1.2) holding. The gauge fieldAµ

and the four-velocity of the fluidUµ are then given byAµ = −φ δ 0
µ andUµ = −Wδ 0

µ . Then, from
the Einstein-Maxwell equations one finds that the metric potentialW and the electric potentialφ
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Quasiblack holes with pressure

satisfy the following equations,

∇2W = 4π GW

(

ρm +
1
3

p+ ρem

)

, ∇i

(

1
W

∇iφ
)

= −4π ρe, (2.1)

where we have defined the electromagnetic energy densityρem by ρem =
1

4π
(∇iφ)2

W2 , with ∇i de-

noting the covariant derivative with respect to the coordinatexi , whose connection coefficients are
given in terms of the metrichi j . The two equations in (2.1) may be combined to produce the
following relation

∇i
( 1

W ∇i
[

W2−aΦ2 +c
])

= 8π G
[(

ρm + 1
3 p+(1−a)ρem

)

W− ε aρeΦ
]

, (2.2)

whereΦ is given byΦ = −ε
√

Gφ + b, anda, b andc are arbitray constants. On basis of this
equation the following theorem can be stated.

Theorem 1.Lemos and Zanchin (2009)
(i) In any Einstein-Maxwell charged pressure fluid, if the metric and electric potentials are such that
W2−a

(

−ε
√

Gφ +b
)2−c vanishes everywhere, then the fluid quantities satisfy the constraint

abρe = ε
√

G

[(

ρm +
1
3

p

)

W + φρe+(a−1)(φρe−Wρem)

]

. (2.3)

(ii) Conversely, in any Einstein-Maxwell charged pressurefluid, if the fluid quantities are such that
equation (2.3) holds and there is a closed surface, with no singularities, holes, or alien matter inside
it, whereW2−a

(

−ε
√

Gφ +b
)2−c vanishes, then it vanishes everywhere inside the surface.

Proof. The proof of this theorem is given in [3] for d-dimensional spacetimes, and will not be
reproduced here. Of course it also holds for d= 4.

As we can see, Theorem 1 gives an explicit relation among the fluid quantities which satisfy the
Weyl-Guilfoyle relation (1.2), and so it can be considered as an equation of state satisfied by the
charged fluid with pressure. Earlier, Gautreau and Hoffman [4] had investigated the structure of
the sources that produce Weyl type fields which satisfy the Weyl quadratic relation (i.e., equation
(1.2) wit a = 1), in the case the matter has stresses, i.e., the pressures,do not vanish. They found
that the fluid obeys the conditionbρe = ε

√
G

[(

ρm + 1
3 p

)

W + φρe
]

. Comparing our theorem to
the theorem by Gautreau and Hoffman [4] we see that in their analysis only the binding energy
was taken into account, and hence the constanta was forced to be equal to unity. Our theorem
generalizes thus the Gautreau-Hoffman theorem.

3. Spherical solutions and quasiblack holes with pressure

3.1 The solution

Given an ansatz of the type (1.2) one is tempted to find exact solutions with matter. This is
what Guilfoyle [2] has done by assuming spherical symmetry among other things. Guilfoyle has
found several classes of solutions of charged matter with pressure. Furthermore, all the solutions
found by Guilfoyle in [2] obey the constraint provided by equation (2.3), see [3]. When matched to
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the Reissner-Nordström exterior solution, the exact solutions found in [2] yield charged stars with
pressure.

In order to display a particular class of Guilfoyle’s solutions one writes the metric in the
spherically symmetric form

ds2 = −B(r)dt2 +A(r)dr2 + r2dΩ , (3.1)

wherer is the radial coordinate,A andB are function ofr only, anddΩ is the metric of the unit
sphereS2. This form of the metric is more useful to explore the physical properties of the sys-
tem than the form given in equation (1.1). The charged pressure fluid is bounded by a spherical
surface of radiusr = r0, and forr > r0 the metric and the electric potential are given by Reissner-

Nordström solutionds2 = −
(

1− 2m
r + q2

r2

)

dt2 +
(

1− 2m
r + q2

r2

)−1
dr2 + r2dΩ, andφ = q

r + φ0 ,

with φ0 being an arbitrary constant which defines the zero of the electric potential, and that, in
asymptotically Reissner-Nordström spacetimes as we consider here, can be set to zero. Here
m andq are the mass and charge at infinity, respectively. Whenq = m the solution is said ex-
tremal. The Guilfoyle’s solutions are found under the assumptions that the effective energy den-
sity ρeff(r) = ρm(r) + Q2(r)/(8πr4) is a constant, and that the metric coefficientA(r) is given
by A(r)−1 = 1− r2/R2, R2 being a constant. The solutions we are interested here is theclass Ia
solutions, in which the constantc = 0. These solutions are given by [2]

B(r) =

[

2−a

a1+1/a

(

k0R2
√

1− r2/R2−k1

)]2a/(a−2)

, A(r)−1 = 1−
r2

R2 , (3.2)

8π ρm(r) =
3
R2 −

Q2(r)
r4 , Q(r) =

ε
√

a
2−a

k0 r3

k0R2
√

1− r2/R2 −k1
, (3.3)

8π p(r) = −
1
R2 +

a

(2−a)2

k2
0 r2

(

k0 R2
√

1− r2/R2 −k1

)2 +
2k0 a
2−a

√

1− r2/R2

k0 R2
√

1− r2/R2 −k1
, (3.4)

wherek0 andk1 are integration constants. These constants are determinedby using the continuity of
the metric potentialsA(r) andB(r) and the first derivative ofB(r) with respect tor at the boundary
r = r0, and sok0 andk1 are given in terms ofm, q andr0.

3.2 Quasiblack holes with pressure

Given the star solutions provided by Guilfoyle, equations (3.2)-(3.4), we now show some
properties of their metric, electric and matter fields, and that under sufficient compactification the
charged stars turn into quasiblack holes (QBHs) with pressure, in which the fields and matter are
regular everywhere. The presence of pressure in QBH solutions is new.

In principle, the solution (3.2)-(3.4) is valid for alla > 0, but there are some regions in the
domain of the parametera in which they are unphysical. An important quantity is the speed of
soundcs, because when compared to the other fluid quantities, it imposes the strongest bounds on
the range of values ofa. We take the usual definition for the speed of sound,c2

s = δ p/δρm, and
consider variations of the pressurep and of the energy densityρm in terms of the radial coordinate
r, i.e.,δ p = p′(r)δ r andδρm = ρ ′

m(r)δ r. The final result yields the speed of sound as a function
of the radial coordinate. We find that it is well behaved and smaller than the speed of light for the
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configurations for which the parametera is in the interval 1≤ a≤ 4/3. Thus we study only star
and QBH solutions in the parameter region given by 1≤ a≤ 4/3.

To show analytically that QBH solutions with pressure really exist we follow the definition of
QBHs given in [5]. A QBH is neither a usual regular spacetime,as for instance a star, nor a black
hole. Roughly speaking a QBH is an object on the verge of becoming an extremal black hole but
actually is distinct from it in many ways, for instance, it has matter inside its own quasihorizon and
is regular everywhere. More precisely, according to the definition in [5], for zero surface stresses (a
condition verified in the solutions above sincep = 0 at the surface), the QBH should be extremal,
so thatm→ q(1+ δ ), with very small non-negativeδ . Moreover, there must be a quasihorizon
r∗, and then the radius of the starr0 must coincide withr∗. As a consequence, we must have
m→ q→ r0(1−δ ). In the present case, once we haveq≃ r0(1−δ ), the boundary conditions at
r = r0 imply in m/q∼ 1+(a−1)δ 2/2a, and thenm/r0 ∼ 1−δ . Taking these considerations into
account we find thatB(r) is of the order ofδ 2, for all r in the interval 0≤ r ≤ r0. Moreover, we
find 1/A(r0) ∼ δ 2. These conditions satisfy the properties of a QBH as defined in [5].

Now in possession of these results we can study numerically an interesting typical case. We
choose herea = 4/3 because, besides being typical, it is the case in which the speed of sound
approaches the speed of light close to the surface of the star, independently of how compressed the
star is. All other cases 1≤ a≤ 4/3 are also typical and have the speed of sound less than 1 at the
surface, the speed of sound being zero fora = 1. We study star solutions and the corresponding
QBH limit. First we analyze the metric potentials, then the matter fields.

(i) The metric potentialsB(r) and A(r) for the typical interesting casea = 4/3 are shown
in figure 1. The exterior metric is Reissner-Nordström metric, and then the curves tend to unity
for large values of the normalized radial coordinater/q. It is seen that for the quasi-extremal case
wherer0/q= 1.00001, the QBH features show up. Namely,B(r)→ 0 for the whole interior region,
0≤ r < r0 and 1/A(r) → 0 atr = r0.
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Figure 1: The metric potentialsB(r) and 1/A(r) as a function of the normalized radial coordinater/q, for
four values ofβ = r0/q in each graph. The caseβ = 1, which givesq = m= r0, is a QBH.

(ii) The matter fieldsρm and p for the casea = 4/3 are shown in figure 2. The study of the
physical properties satisfied by these matter fields was in part done in ref. [2] (see figure 2). We
see that the pressure is always smaller than the energy density for all r0/q≥ 1. The ratiom/q runs
from unity, at the QBH limit, to

√
a for a extremely sparse star, withr0 −→ ∞. We also find that,

for the class of solutions we are discussing, i.e., those forwhich c = 0, the boundary conditions
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Figure 2: The relativistic mass densityρm(r), and the pressurep(r) as a function of the normalizedr/q for
four different values ofβ = r0/q.
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Figure 3: Two typical cases for the radial speed of sound as a function of the normalizedr/q, for four values
of β = r0/q.

at r = r0 give m
q = (1−a) q

r0
+

√

a
[

1+(a−1) q2

r2
0

]

. The maximum value ofm/q is in the limit

r0 → ∞ and is given bym
q

∣

∣

∣

max
=

√
a. Since we restrict the range of variation of the parametera

within the interval(1,4/3) the maximum possible value for the ratiom/q is 2
√

3/3. We can also
obtain analytic expressions for the fluid quantities like mass and charge densities and pressure in
the QBH limit, but we do not write such expressions here. An analysis on the speed of soundcs

of these solutions is new and done now. The condition thatcs is well defined and smaller than
the speed of light guarantees, of course, further interesting physical properties for the solutions.
We restrict here our analysis for the QBH limit of these charged stars. In this limit the speed of

soundcs is given byc2
s =

a+(2−a)
√

a
√

1−r2/r2
0

2−a+
√

a
√

1−r2/r2
0

− 1. The casea = 1 (andc = 0) corresponds to the

Majumdar-Papapetrou solutions, which have zero pressure.Thus, as expected the speed of sound
of the QBH is zero whena = 1. At the surface,c2

s tends to−1+a/(2−a) which reaches unity for
a = 4/3. The speed of sound at the center (r = 0) of the QBH is such thatc2

s(0) is bounded to−1
from below asa tends to zero. In fact we see thatc2

s(0) is zero fora = 1 and tends monotonically
to −1 asa goes to zero. Hence,cs is undefined for alla < 1. The behavior of the speed of sound
inside the stars witha = 4/3 anda = 1.2 can be seen in figure 3. As seen in the figure, fora = 4/3
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the speed of sound approaches the speed of light close the surface of the star, independently of how
compressed the star is.

4. Conclusions

Charged matter systems with pressure present novel and interesting features. A novel feature
is the beautiful simple relation (2.3) displayed by the fields and matter quantities. An interesting
feature is that when the matter is matched to a proper vacuum,the corresponding star solution,
under appropriate compactification, can turn into a QBH withpressure. The presence of pressure
in QBH solutions is new, and its importance comes from the fact that it tends to stabilize the system,
erasing thus the criticism against the possible existence of QBHs based on the previous solutions
without pressure (e.g., those solutions found in [6]).

References

[1] J. P. S. Lemos and V. T. Zanchin,A Class of exact solutions of Einstein’s field equations in higher
dimensional spacetimes,d≥ 4: Majumdar-Papapetrou solutions, Phys. Rev. D71, 124021 (2005).

[2] B. S. Guilfoyle,Interior Weyl-type solutions to the Einstein-Maxwell fieldequations, Gen. Relativ.
Gravit.31, 1645 (1999).

[3] J. P. S. Lemos and V. T. Zanchin,Electrically charged fluids with pressure in Newtonian gravitation
and general relativity in d spacetime dimensions: Theoremsand results for Weyl type system, Phys.
Rev. D80, 024010 (2009).

[4] R. Gautreau and R. B. Hoffman,The structure of the sources of Weyl-type electrovac fields in general
relativity, Nuovo Cimento B16, 162 (1973).

[5] J. P. S. Lemos and O. B. Zaslavskii,Quasiblack holes: definition and general properties, Phys. Rev. D
76, 084030 (2007).

[6] J. P. S. Lemos and V. T. Zanchin,Bonnor stars in d spacetime dimensions, Phys. Rev. D77, 064003
(2008).

7


