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A perturbative approach for arbitrary choices of the equation of state of the universe is introduced

in order to treat scenarios for mass varying neutrinos (MaVaN’s) coupled to the dark sector. It al-

lows for considering viable varying mass neutrino models coupled to any quintessence-type field.

The Generalized Chaplygin model is considered as an example. Upon certain conditions, the

usualstationary conditionfound in the context of MaVaN models together with the perturbative

contribution can be employed to predict the dynamical evolution of the neutrino mass. Results

clearly indicate that the positiveness of the squared speedof sound of the coupled fluid and the

model stability are not conditioned by thestationary condition.
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MaVaN’s in the GCG scenario

The existence of a cosmological neutrino background is a firmprediction of the cosmological
standard model, hence hints about their contribution to theenergy density are quite relevant.

If from one hand, the most natural candidate to couple a SM singlet quintessence-like scalar
field is the Higgs sector [1, 2], an exciting alternative is the coupling to neutrinos as in the context
of the so-called mass varying neutrino (MaVaN) models [3, 4,5, 6, 7]. This last possibility is par-
ticularly interesting since the coupling of neutrinos to the dark energy scalar field component may
lead to a number of significant phenomenological consequences. Actually, this coupling renders
the MaVaN mechanisms fairly natural. Indeed, if the neutrino massmν is generated by the dynam-
ical value of a cosmologically active scalar fieldφ instead of through a vacuum expectation value
(VEV) it would be an evolving quantity.

The neutrino energy density and pressure are expressed through a Fermi-Dirac distribution
function without a chemical potential,f (q), whereq≡

|p|
Tν0

, and sub-index 0 denotes present-day
values. Assuming a flat Friedman-Robertson-Walker cosmology with a0 = 1, one thus have

ρν(a,φ) =
T4

ν0

π2 a4

∫ ∞

0

dqq2
(

q2 +
m2(φ)a2

T2
ν0

)1/2

f (q), (1)

pν(a,φ) =
T4

ν0

3π2 a4

∫ ∞

0

dqq4
(

q2 +
m2(φ)a2

T2
ν0

)1/2

f (q).

By observing that

mν(φ)
∂ρν (a,φ)

∂mν(φ)
= (ρν(a,φ)−3pν (a,φ)) , (2)

and from Eq. (2), one can obtain the energy-momentum conservation for the neutrino fluid

ρ̇ν(a,φ)+3H(ρν(a,φ)+ pν(a,φ)) = φ̇
dmν(φ)

dφ
∂ρν(a,φ)

∂mν(φ)
, (3)

whereH = ȧ/a is the expansion rate of the universe and thedotdenotes differentiation with respect
to cosmic time.

The coupling between cosmological neutrinos and the scalarfield as specified in Eq. (2) is
restricted to times when neutrinos are non-relativistic (NR), i. e. ∂ρν (a,φ)

∂mν (φ) ≃ nν(a) ∝ a−3 [4, 6,
8]. On the other hand, as long as neutrinos are relativistic (Tν(a) = Tν0/a >> mν(φ(a))), the
decoupled fluids should evolve adiabatically since the strength of the coupling is suppressed by the
relativistic increase of pressure (ρν ∼ 3pν ).

Treating the system of NR neutrinos and the scalar field as a unified fluid (UF) which adiabat-
ically expands with energy densityρUF = ρν + ρφ and pressurepUF = pν + pφ leads to

ρ̇UF +3H(ρUF + pUF) = 0 ⇒ ρ̇φ +3H(ρφ + pφ ) = −φ̇
dmν

dφ
∂ρν

∂mν
, (4)

where the last step is derived from the substitution of Eq. (3) into (4).

It is well known that the relative contribution of the energydensities components of the uni-
verse with respect to the one of the dark energy sector is on its own a problem. The assumptions
proposed in Ref. [4] and subsequently developed elsewhere [8, 9, 6, 10] introduce a stationary
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MaVaN’s in the GCG scenario

condition (SC) which allows circumventing the coincidenceproblem for cosmological neutrinos,
by imposing that the dark energy is always diluted at the samerate as the neutrino fluid, that is,

dV(φ)

dφ
= −

dmν

dφ
∂ρν

∂mν
. (5)

This condition introduces a constraint on the neutrino masssince it promotes it into a dynamical
quantity, as indicated in Eq. (4). In this context, the main feature of the scenario of Ref.[4] is that,
in what concerns to dark sector, it is equivalent to a cosmological constant-like equation of state
and an energy density that is as a function of the neutrino mass [7].

At our approach, the effect of the coupling of the neutrino fluid to the scalar field fluid is
quantified by a linear perturbationεφ (|ε | << 1) such thatφ → ϕ ≈ (1+ ε)φ . It then follows a
novel equation for energy conservation

ϕ̈ +3Hϕ̇ +
dV(ϕ)

dϕ
= −

dmν

dϕ
∂ρν

∂mν
. (6)

After some straightforward manipulation one obtains for the value of the coefficient of the pertur-
bation [7]

ε ≃
−dmν

dφ
∂ρν
∂mν

[

φ2 d
dφ

(

1
φ

dV(φ)
dφ

)] , (7)

for which the condition|ε |<< 1 is required. Upon fulfilling all known phenomenological require-
ments, the above result allows for addressing a wide class ofscalar field potentials and related
equations of state for various candidates for the dark sector (dark energy and dark matter), which
through the SC would be incompatible with realistic neutrino mass generation models.

In order to verify under which conditions Eq. (5) agrees withour perturbative approach for a
given background equation of state, the coefficient of the linear perturbation should be given by

ε ≃

dV(φ)
dφ

[

φ2 d
dφ

(

1
φ

dV(φ)
dφ

)] (|ε | << 1). (8)

This means that one must search for a neutrino mass dependence on the scale factor for which the
above condition is satisfied. Thus, once one sets the equation of state for the dark sector, there will
be a period at late times for which the SC and the perturbativeapproach match. In particular, this
feature can be reproduced by the generalized Chaplygin gas (GCG) equation of state [11, 12].

Given a potential, the explicit dependence ofmφ on the scale factor can be immediately ob-
tained from Eq. (5). Furthermore, it is necessary to determine for which values of the scale fac-
tor the neutrino-scalar field coupling becomes important. For convenience one sets the value of
a = aNR for which ρν ,NR = ρν ,UR holds, usually established by the condition ofmν & Tν , that pa-
rameterizes the transition between the NR and the ultra-relativistic (UR) regime. In fact, this takes
place when

mν(a) = m0(φ0/φ(a))n = χ
Tν ,0

a
(9)
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Figure 1: Present-day values of the neutrino massm0 and the corresponding values ofaNR for which the
transition between the NR and UR regimes takes place in the GCG phenomenological scenario withα = 1/2
and variableAs. The increasinggraylevelcorresponds to increasing values ofm0, for the boundary values
m0 = 0.05eV, 0.1eV, 0.5eV, 1eV, 5eV, respectively.

whereχ is estimated to be aboutχ ≃ 94 considering thatρν/ρCrit = m0 [eV]/(94h2 [eV]), whereh
is the value of the Hubble constant in terms of 100kms−1 Mpc−1. Such a correspondence between
aNR and m0 is illustrated in the Fig. 1 for the case ofα = 1/2. Considering the whole set of
parameters that characterize the background fluid, one notices that it is rather difficult to see that
the maximal value assumed by theε parameter corresponds to its present-day value.

One observes that the interval of parametersAs, m0 and eventuallyα , for which our approx-
imation can be applied (ε < 1), is valid fora > aNR and severally constrained by the imposition
aNR . 1. For values ofAs (0.7 . As . 1) [13, 14] one finds that 0.1 < ε . 1. Just under quite
special circumstances the usual SC and the perturbative contribution of MaVaN’s match. In the
original MaVaN scenario [4], the SC corresponds to the adiabatic solution (H2 ≪ d2V/dφ2) of the
scalar field equation of motion. In this case, the kinetic energy terms of the scalar field can be
safely neglected. The consistency of our perturbative scenario with the stationary condition can be
achieved only when the kinetic energy contribution is not relevant at late times.

For As = 0, the GCG behaves always as matter, whereas forAs = 1, it behaves always as a
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Figure 2: Model independent perturbative modification on squared speed of soundc2
s as a function of the

scale factor for the neutrino-GCG coupled fluid in comparison with the adiabatic GCG fluid forAs = 0.7
with α = 1,1/2, 1/3, 10−4, for a present-day value of neutrino mass,m0 = 0.5eV.

cosmological constant. Consequently, it is natural that the relevance of the kinetic energy term at
present times is suppressed when the parameterAs gets close to unity, which further ensures the
agreement between the perturbative approach and the SC analysis.

Fig. 2 illustrates the results for an increasing neutrino mass with the scale factor for a set
of phenomenologically consistent parameters in the context of the GCG model. Interestingly, for
m0 = 0.5eV, a fairly typical value, one can see that stable MaVaN perturbations correspond to a
well defined effective squared speed of sound,

c2
s ≃

dpφ

d(ρφ + ρν)
> 0. (10)

The greater them0 values, the more important are the corrections to the squared speed of sound,
up to the limit where the perturbative approach breaks down.However, one finds that as far as
the perturbative approach is concerned, our model does not run into stability problems in the NR
neutrino regime. In opposition, in the SC treatment, where neutrinos are just coupled to dark
energy, cosmic expansion in combination with gravitational drag due to cold dark matter have a
major impact on the stability of MaVaN models. Usually, for ageneral fluid for which the equation
of state is known, the dominant behaviour onc2

s arises from the dark sector component and not
by the neutrino component. For the models where the SC (cf. Eq. (5)) implies in a cosmological
constant-type equation of state,pφ = −ρφ , one inevitably obtainsc2

s = −1.
Thus, the perturbative approach is in agreement with the assumption that the coupling between

neutrinos and dark energy (and/or dark matter) is weak. It isfound that the stability condition
related to the squared speed of sound of the coupled fluid is predominantly governed by dark energy
equation of state. It also reproduces a dynamics similar to that one of the weakly coupledcosmon
fields [15]. Such a troublesome behaviour should have already been observed as the SC implies
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thatc2
s = −1 from the very start, and the role of recovering the stability is relegated to the neutrino

contribution [10]. The loosening of the stationary constraint Eq. (5) emerges from the dynamical
dependence onϕ , more concretely due to a kinetic energy component [7]. The knowledge of the
background fluid equation of state for the dark sector (the GCG in our example), and the criterion
for the applicability of the perturbative approach, do allow to overcome thec2

s negative problem,
independently from the neutrino mass dependence set by the SC.
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