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An overview of some recent developments in inhomogeneoweiads presented.

As the volume and precision of cosmological data improvesi)libecome more and more essen-
tial to understand the non-linear behaviour of the Eindieid equations. This requires the study
of exact inhomogeneous solutions, including their derdigyributions, their evolution, their ge-
ometry, and their causal structure. Observations are giy@ifected by the detailed geometry
and evolution of a model, and therefore interpretation c&fertations depends on understanding
them.

It is generally assumed the universe is homogeneous if gedraver large enough scales, but to
actually prove this is so, will require the assumption toddaxed, and a rigorous inhomogeneous
approach to be applied.

Though the Lemaitre-Tolman metric has long been used foetsad spherical inhomogeneities,
there have been a number of new results, including a varfetethods for creating models with
specific properties, and their application to cosmic stmest on several different scales.

Interest in the Szekeres metrics is on the increase, andiige-gpherical metric was recently used
to model specific cosmic structures for the first time. Thesgpéanar and quasi-hyperspherical
metrics have been hardly studied until recent work invaeijtheir physical and geometric prop-

erties. There is enormous scope for work with these metrics.
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1. Introduction

Why study inhomogeneous models? The real universe is vergyuTo properly understand
what we see, we should apply all possible methods: periorbéteory, N-body newtonian sim-
ulations, and exact inhomogeneous metrics — each has itaidaoh validity. Inhomogeneous
metrics have the advantage that they are fully non-linedrratativistic solutions of the Einstein
field equations (EFES).

The assumption of homogeneity has become so well estathlighat it has become all-
pervasive. But now, with so much data coming in, it's timedstthomogeneity. Cosmological
data reduction relies heavily on the Robertson-Walker (Rwfric — we need to beware of a cir-
cular argument. It will be a significant challenge to checlkolitof our well-known results actually
depend on the assumption of homogeneity, and to re-derira #il without that assumption.

Here | will present a selection of results in inhomogeneasymlogy, especially work done
with Lu, McClure, Krasnski, Bolejko, Célérier, Alfedeel, Mustapha, Ellis andeth but | won't
try to be comprehensive. I'll attempt to provide the basarg] thereby promote the use of inho
mogeneous metrics for the study of cosmological problems.

Inhomogeneous metrics will become more important as theuatremd accuracy of cosmo-
logical data increases, and more precise analysis is nesddidere are plenty of opportunities for
good research.

2. The Lemaitre-Tolman Metric

The Lemaitre-Tolman (LT) metric was the first inhomogeneoois-vacuum metric to be dis-
covered, and has probably been the most popular choice foeltitay cosmic inhomogeneity ever
since, certainly in recent decades. It is a sphericallyragtnic, inhomogeneous dust model, dis-
covered by Lemaitre, rediscovered by Tolman, and studieBdndi [84, 115, 23]. The metric
is

/\2
ds? = —dt? + %dﬁ + R2d0? (2.1)

whered? = d6? +sin? 0 d¢?, R(t,r) is the areal radius, an’ = OR/0r. The free functiory (r)
determines the local geometry; it gives the “embeddingeingfl constantt, § surfaces in 3-d flat
space [51]. Also the Ricci scalar of the spatial 3-surfaces,

3o _ “2RS+[R)

o 2.2)

is only zero (for allr) if both f and f” are zero. The matter is a pressure-free perfect fluid,
T% = puu® | (2.3)
that is comoving

u® =4y . (2.4)
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From the EFEs we get
2M AR?

2 2 e A 25
R =—+f+—, (2.5)
whereR = R /dt, and
2M’
"= ReR =9

whereM (r) is a second free function that gives the gravitational masgsma comoving shell of
radiusr. Here f(r) also plays the role of twice the local energy per unit masbe@fiust particles,
so it’s often writtenf (r) = 2E(r). It follows from (2.5) that

M AR

R=—— 2.7
R R2+ 3 ’ ( )
.. M AR M
/ / /
_ = ) .8
RR R+WW+(3 R2>R (2.8)
WhenA = 0, the solutions of (2.5), in terms of parametgare
3/2(4 _
A=0, f>0: R= %(coshn—l), (sinhn—n) = / ](\2 @) ; (2.9)
2 3
0. f—0- (T Y _(t=a).
sogos rea(L), (B0 e
M : (=f)*(t—a)
A=0, f<O0: R=——(1—cosn), —sinn) = ; 2.11
f (_f)( n) (n n) i (2.11)

for hyperbolic, parabolic, and elliptic evolution respeely. (Near the origin, wher¢ — 0, the
type of evolution is determined by the sign®f /M or f /M?/3.) WhenA # 0 there is a very com-
plicated solution in terms of elliptic integrals. Theseusmns contain a third free functiom(r),
which is the local time of the big bang, the time wh&n= 0 on each worldline. In other words,
the constant worldlines all emerge from the bang at different times, llgubhe outer spheres first
and the origin last, as illustrated in the sketches below.

/

/

—_

crunch

Evolving worldlines Comoving worldlines

bang

The above evolutions equation and solutions may also béewrit
.2 Aa?
b=—4z+—, (2.12)
« 3
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A=0, f>0: t:a—i—x*g/z{ (1+za)?2—1 —arcosh(l—i—xa)} , (2.13)
A=0, f=0: t=a+ 20‘3, (2.14)
A=0, f<0,0<n<m: t:a+x_3/2{arccos(1+xa)— 1—(1+m)2}, (2.15)
A=0, f<0, 7<n<2rm: t:a+m*3/2{27r—arccos(1+xa)—l— 1—(1+:ca)2} .
(2.16)
where @ l /] 16 R (2.17)

T M T apse = M3

Naturally, the time reverses of these models, obtained layghg (t — a) to (a —¢) anda’ to
—a’, are also solutions. It is quite possible to have adjacdimttieland hyperbolic regions in
one model — for example, a re-collapsing dust cloud coulduseanded by an ever-expanding
universe. The two regions would have a parabolic shell avtlvmdary between them, but extended
parabolic regions are also possible. In practice, (2.9)1(2 (2.13), (2.15), (2.16) are not good for
calculating the evolution of worldlines that are close togbalic, so a series expansion is used
instead. Similarly, near the bang or crunch, where the ¢eolus close to parabolic, one obtains
better accuracy by using the same series expansion.

It is sometimes useful to have an expressionfarWhenA = 0 it follows from (2.9)-(2.11),
that for all f values one can write [63]

R’:<%—§>R—[a’+<%—%> (t—a)}f%. (2.18)
Alternatively, one can write the parametric expressions

R M 1 /3 _£\3/2,/

<o Fegra-esd (Gao)- S e
__sinn(n —sinn) B sin _
®1 (77) - (1 — COS??)Q ’ ¢2(77) - (1 — COS77)2 ) (220)
R M ' /3 3/2 1

[>0: E:M(1—¢4)+f7(§¢4—1>—fMa%, (2.21)

_sinhp(sinhn —n) _ sinhp
4= (coshn—1)2 ~ ¢5= (coshn—1)2 " (2.22)

A scale length and time may be defined by

- M ~ M
R(r) = 7 T(r)= 7R (2.23)
and for elliptic worldlines the maximurf is 2R, while the lifetime from bang to crunch &7

By specifyingA and the three free functions 3 (r), f(r), anda(r) — an LT model is fully
determined. Between them they provide a radial co-ordifraedom and two physical relation-
ships, e.gM = M(r), f = f(M) anda = a(M), though it is normal to give all of them in terms
of r. It is not possible to give any kind of standard form for onghafse functions that will cover
all possibilities. For example, the choidé o 2 is common, but does not allow regions of vacuum



Modelling Inhomogeneity in the Universe

where M’ = 0; a standard choice fof(r) cannot include both models in whighchanges sign,
and those in which it doesn’t; and similarly no choicex¢f) can cover cases whedgs constant
in some places and cases where it never is.

See [74] for a survey of work done on inhomogeneous models 427, [101] for an intro-
duction to some inhomogeneous models, and [20] for a sumofayme recent developments. A
dynamical systems analysis is given in [109].

2.1 Singularities

Singularities occur where the density (2.6) or the cuneatliverge. The Kretschmann scalar

48 M* N 32M M’ N 12(M")?
R6 ROR! R4(R/)2 :

K = RapeaR™ = (2.24)
Big Bang At the big bang or the big crunch, we hake= 0, which occurs wheré= o or where

t = a+2nT. HereR' diverges unless’ = 0. The bang and crunch surfaces are spacelike [50, 65],
except possibly at the origin.

Shell Crossings Shell crossings are timelike surfaces that occur where aeriapherical
shell of matter collides with an adjacent outer shell, sa fla= 0. These surfaces are timelike
[50, 64], and have a different redshift structure from theag#3]. Since ther coordinate is
comoving, it becomes degenerate at such loci. Physicallynoight argue that non-zero pressure
would develop before a shell crossing occurs, but for a “flafdnany stars or galaxies that doesn'’t
apply. Clearly shell crossings represent a breakdown df Tresssumptions and for many purposes
they are undesireable. Shell crossings can be eliminabed &n entire model, in th& = 0 case,

by applying the conditions found in [50, 64] to the 3 arbiyrdunctions. These conditions were
derived by writingR’ in terms of the parameterand looking at the early and late time behaviours.

They are important if you want your model to be everywherd tathaved:
t

R
fgy not always increasing outwards

However, bothR? = 0 and R’ = 0 can occur at non-singular locations as explained below.
‘Shell Focussing’  There are also “shell focussing” singularities, e.g. [37, %6, 98, 102, 65,
116, 83, 49, 85, 81, 72]. For certain LT models, the first eeétite big crunch to form, where the
central worldline reaches the crunch surface, can emit rlighyrays, some of which may even
reach infinity. (So they might be better called “light focdugg singularities.) The nature of the
singularity is difficult to understand, and seems to depanthe path of approach to the singular
point.

LShell crossings have been extensively investigated, @9g1p1, 97, 21]
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2.2 Regularity Conditions

Regular signature  For the metric (2.1) to retain a Lorentzian signature,
f>-1 (2.25)

is required, the equality only occuring whefé= 0 — see below.
Regular Origins  An origin of spherical coordinates is a locyswhere

R(t,ro)=0 V¢, (2.26)

so thatR(t,r,) = 0, R(t,r,) = 0, etc. Obviously one usually wants an origin to be a normal
timelike worldline. The conditions for a regular origin aetained by requiring that, in the limit as
the origin is approached, the density and the curvatureldhmmi diverge, and the time evolution
at the origin should be a smooth continuation of it's immeslimeighbourhood. See for example
[68, 94]. It is found that, away from the bang or crunch, on astantt slice,

M~R}, f~R%. (2.27)

This may be realised by settingx M2/3, e.g. M ~ 13, f ~ 12, at the origin. Variables, = & /3 of
(2.17) have the advantage that they are non-zero at theoffgn addition one wants the density
to be smooth through the origin, i.e. to have zero gradiesreththen there are further conditions
[94], most notably

a —0. (2.28)

However, there is no singularity if this last one does nothdhus, the locuf? = 0 includes both
the spacelike bang and crunch surfaces, and the timeligmeri
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Regular Spatial Extrema Similarly, R’ = 0 includes regular loci as well as singular shell
crossings. As pointed out in [122], any spherically symimetrodel with closed sptiak (= const.)
sections, such as the= +1 Freidmann-Lemaitre-Robertson-Walker (FLRW) model, hasri
gin, a maximum radius, and a second origin — a north pole, aateq and a south pole. At a
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spatial maximum we obviously hav® = 0, but we expect the density and curvature to be regular
at such alocus. This is only possible on a comoving shell, i.e

R(t,rm)=0 V t. (2.29)

The conditions for a regular maximum [64, 26] are that therad shell crossing and no surface
layer, i.e.

M (rp)=0=f'(rm)=d'(rm), flrm)=-1. (2.30)

Therefore the LT model may have a number of interesting alp@pologies [64, 51, 78], such as
a black hole in a cosmological background, or a sequence wihmazand minima — “bellies” and
“necks”. Itis also possible to have an elliptic (recollagjggi model that is open.

2.3 Special Cases

Dust Robertson-Walker ~ The LT metric contains the dust RW metric as the special case
focM?3 d=0. (2.31)

Putting this in (2.5) and (2.6) makeé%/Ml/3 andp independent of. In standard RW coordinates,

M = (kpoS3/6)r3, f = —kr?,a=0, R=rS(t), so itis evident thaf(t) is the scale factor, and

Kkp0Ss
&

Consequently one may write the LT arbitrary functions inmrfohat looks like RW plus perturba-
tion, but is exact,

Ja=—k, M;= (2.32)

M = Msr3(1+M(r)) (2.33)
f=for®(1+ f(r)) (2.34)
a=ap(l+a(r)), (2.35)

where M, f anda may be set to zero at the origin, say. In terms of the RW paemnef the
‘unperturbed’ RW model that applies at the origin, we cartavri

R S 2 M f2 A
S=7 g “mTgsgze R gapac AT 3R (2.36)
QmO
so that fo=—k — Ms= QHOQ(—kaO)B/Q , ag=0, (237)
1
and ofcourse Sy= ———— A=30,H2. 2.38
T o AHy (2.38)

Schwarzschild The spherical vacuum metric is obtained\if = 0, and the different choices
of f(r) anda(r) cover it with different families of geodesic coordinates.utBo get the full
Scwarzschild-Kruskal-Szekeres (SKS) topology requjres—1 anda’ = 0 = f’ so thatR’ = 0 at
the “throat” or “neck”, and that decreases anflincreases on either side — see [51, 54] for the
details and some plots.
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f(r)/"/

\\ Sy - /f(?)i -

R' =0 a(r)
Neck

Datt-Kantowski-Sachs  The Datt [35] models are inhomogeneous Kantowski-Saclesrtyqd-

els, and though often treated as a separate solutionR{ith0, they are in fact limits of LT models
[54].

Vaidya In the null limit, when f — oo we get the Vaidya metric that represents incoherent
radiation emanating from (or converging on) a sphericaiij8é, 53].

2.4 Constructing Inhomogeneous Models

The most obvious way to construct an LT model is to choose hHieetarbitrary functions.
Choosingf(r), for example, works quite well if one is interested in the metry and topology
of the model. See [64, 51]. But for many situations, it is nietags obvious what the density
distribution and evolution will be, giverfi, M anda. In [110], for example, the use of the density
pi(r), the 3-d Ricci scalafR;(r) and the areal radiug;(r), on an initial surface at = t; was
advocated, and an appendix suggested how ‘lumps’ and “ioidlse density and curvature could
be prescribed on the initial surface.

In place ofa(r), one may instead specifff; = R(¢;,r) at some initial time, set =0 att =t;
and re-write (2.11) in the form

M 2M
R=-—=—(1—cosn)+ R; | cosn+ — 1 sin ,
( n) ( "N ChR 77)

(=f)
t= %(n—sinn) + % <Sinn+ (_2;\)4}%2 —-1(1- cosn)) ; (2.39)

etc for the other cases, (2.10) & (2.9).
If you prefer to think in terms oR, then choosé/ (R;), f(R;) anda(R;) on an initial surface
t =t;, and setr = R;. If p = p;(R;) is given, then, again choosing= R;,

M(R;) — My = /Ri WL (2.40)

Ry 2
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If the expansion rate and radidg (1)) andR;(M) are specified, then by (2.5)

o 2M  AR?
M)=R?_— — v 241
or if the R;(M) and f(M) are specified, then
R — [+ X? ( : )1/3
RM)=—F—-—, X= OM?2A — (R2— f)3 —VIM?2A , 2.42
(M) == V (72— f) (2.42)

or R(M):’/}';Mf’ when A=0. (2.43)

Initial and Final Profiles  In[76, 77, 61] a number of very useful methods foe 0 LT models
were presented. Since these have been summarised els¢@bjene will only outline the basic
idea here. Rather than specifying all the data on a singkiaiir3-surface, one may instead specify
the density profilep; on one constant time surfa¢e= ¢; and another density profile, at a later
time t = t5. There is a well-defined algorithm for finding the LT modeltthaolves from one to
the other.

Suppose, on the surfaces=t; & t = t2, we specify the density to be= p;(M) andp =
p2(M), ther? from (2.6),

Mg

R?(M)—RS‘:/ dM | i=1,2 (2.44)

My kpi (M)
and normally we would havéy, = 0 = M,. We set the coordinate freedom wia= M. Since
M is constant along each particle worldline, we now knfw and R, for each particle. We
consider a specifia/, and we assum&(t,, M) > 0 andRy > R;. By the timet,, the worldline is
either hyperbolic and still expanding (HX), elliptic andlstxpanding (EX), or elliptic and already
collapsing (EC). In the HX case, we apply (2.13) and (2.1Thatwo times and subtract them:

(I1+za9)?—1 —arcosh(1+ zas9)
— /(4 z01)2—1 4 arcosh(14zay) — 2732 (ty —t,) = Y x(x) =0, (2.45)

with similar expressions for the other cases. This is solueerically by the bisection method,
and for this purpose, a pair of values that bracket the solution were found. Having obthine
f=xM?/3, qis found by using (2.13) again:

a:tl—xfg/z{ (14 2za1)?—1 —arcosh(1 —|—xa1)} . (2.46)

Obviously it is important to know which case applies alongheaorldline. In [76] it was shown
that

(65)] 3/2 20[1 aq aq 2
ta—11 > (7) T — arccos <1——) + 24— — (—> — EC (2.47)

(6% (6% (6%

2In this case, though, (2.44) would not be well defined if theeee vacuunp; (M) anywhere, since the range Bf
over whichM is constant could be anything.
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2
ty—t1 < % (aiﬂ - af”) —~ HX  (2.48)
otherwise — EX (2.49)

The borderlines between these cases require careful eagteee appendix B of [61]. Ry < R;
then there are 3 more solutions, including the collapsimgehyolic model — the time reverse of
(2.13).
A similar approach may be used if velocity profil&s (1) and Ry (M) are given at; & to,
of if a density profile is given at one time and a velocity pefit another [77]. There are quite a
few other useful options, such as setting the late time deon$ivelocity behaviour, specifying a
simultaneous time of maximum expansion, specifying ontwndng or decaying modes, etc [61].
Applications of these methods to model a galaxy cluster,ié, @ogalaxy with a central black
hole, the Shapley Concentration and the Great Attractorcah be found in [76, 77, 78, 19, 13, 18].

3. Observations in Lemaitre-Tolman Models

The assumption that the universe is homogeneous, and thHisemesented by an FLRW
model, has led to a very good understanding of its very latgkedeatures and evolution. But once
the cosmological data are sufficiently accurate and comphatr a large enough range of redshifts,
this assumption should be checked.

However, the assumption of homogeneity pervades so mudretieal and observational
work so thoroughly, that there is a real danger of a circutgument. Consequently, any proof
of homogeneity must ensure it does not rely on results obdairsing an assumption of homogene-
ity. Clearly this will not be a simple task. More preciselyetaim is not only to verify homogeneity
but also to quantify it: how much fluctuation is there on eaxddes?

There are a several reasons why spherical symmetry is a gebdtép towards relaxing the
homogeneity assumption: (a) we are at the centre of our plsiome, so it makes sense to consider
spacetime in terms of spherical co-ordinates about theradrsgb) the universe does seem close
to isotropic on large scales, but radial homogeneity is asyao verify because of the finite travel
time of light and the miniscule duration over which cosmatafjobservations have been made, so
it is more urgent to determine the radial variation of thenmg(c) there is no deep all-sky redshift
survey at present, and the zone of avoidance is likely to apdrgany survey for the foreseeable
future; (d) it keeps the theory and numerics tractable wthidebasics are sorted out. Of course, in
the long run, the assumption of spherical symmetry will bepged.

Here we derive the observational relations that would beebtgal in an LT model with given
arbitrary functions. This is also known as the ‘forward peoly. Below we focus on a central
observer, though non-central observers have also beeitdeosts.

3.1 Observables and Source Evolution

The observables we shall use are those for which the dataséeady substantial and will
in the near future become extensive, the redshithe number density in redshift spacéz), the
apparent luminosity and angular diametér) & 4(z). Connected with each of these is a source
property, the peculiar velocity, the mass per sourgg z) the absolute luminosity.(z) and the
true diameteD(z).

10
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The redshiftz is

Ao
=—-1 3.1
2= (3.0)
where), and)\. are the observed and emitted wavelengths. The diameteuamaidsity? distances
are
D L .
dp="5,  dp=4|7 dio=10""""dyp, (3.2)

whered and/ are the angular diameter and apparent luminosity of a spi?¢e) and L(z) are
the corresponding true diameter and absolute luminositgndm are the apparent and absolute
magnitudes, and, is 10 parsecs. The two distances are related by the reciproaty¢im [44,
100, 39],

(14 2)%dp =dy, . (3.3)

The Hubble and deceleration constants are obtained frosidpe and concavity of thé;, (z) plot
at the origin,

ddp, 1
L - 3.4
| " (3.4)
1 d2%dy,
1——— = = 3.5
H() dZ2 0 q0 , ( )
and a common observational definitionfdf>) andq(z), based on the FLRW model, is
1 1 d d
1 4 ( z ) , (3.6)
H 1+ Qu(Hodp/(1+2))2 dz \ (1+2)
(1+2)dH
= 1. 3.7
1=~ 3.7

For general non-homogeneous models, there is no obviowsaetefinition of H (z) or ¢(z), and
a number have been proposed. In any case, what matters isldtierr between the model and
observations.

If in a redshift survey of the sky]/NV sources are observed to lie betweeandz + dz within
solid angledw = sin 6 df d¢, then the redshift-space mass density is

26 dN
29 _ wn = K (3.8)

K - dwdz
wheren is the redshift space number density anis the mean mass per source. For a treatment

which considers several different source types and obsengaat different wavelengths see [56].
A significant feature of these definitions is that each olad#esd, ¢ andn, is associated with a
source propertyD, L andyu, which have certainly evolved over cosmological timessaléhe latter
are much harder to determine observationally, and studitein values and evolution invariably
assume a homogeneous RW model in which to do the analysisevowf we eventually want to
prove that the universe is homogeneous, it is imperativedman circular argument. The only way
to be certain of the conclusion is to do the analysis withoakimg the homogeneity assumption.

3In [80] a “corrected luminosity distance” was defined to be #ame as the diameter distance. Some authors
have called this latter the “luminosity distance”, whichipps has led to a confusion of terminology and sometimes to
incorrect definitions.

11
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3.2 The Null Cone and the Observational Relations

Light rays arriving at the central observer O follaiv? = 0 = d6? = d¢?, so from (2.1) the
past null cone (PNC) of the observation event(t,,r = 0) satisfies

dt R
—=—  W=V1+2E, (3.9)
dr w
and we write the solution = #(r) or r = #(t), defining the local time from the bang to O’'s PNC
with

r=i-a. (3.10)

This radial null path is necessarily geodesic. We denoteaatity evaluated on the observer’s past
null cone with a hat on top or as a subscript, for exanipl&r),) = R or [R], though this will
often be omitted where it is obvious from the context. FonegiLT model, equation (3.9) must
be solved numerically.

As is well known for the LT model (e.g. [23, 95, 87]), the reifisbf sources on the PNC
observed at O obeys

= dr, (3.11)

whereR’ is given by (2.8) and (2.5).

The diameter distance is, by (3.2), the quantity that cdsvaeasured angular sizes of objects
to their physical sizes at the time of emission. It is evideom the metric (2.1) that this is the
areal radiusk, evaluated on the PNC,

dp = R=R(t(r),r) . (3.12)

and of coursel, follows from (3.3).
To convert the proper density of an LT model to the observddhift space density, requires
that we know how the locus of the PNC relate® comoving radius, i.e?(z). Then the total mass

contained in a small volume must be the same:
pR' R? A9 dz ) M’ dr

drd R*=26— and = |—— 3.13
e PO Tar 7wz, (3.13)

92
—szdw = [
K

where (2.6) has been used.
In the numerical solution of these equations, (3.9), (3&13.13), we need to evaluat®, R’
and R’ at each new point along the PNC. Along the constambrldline at each step we integrate

R
L [TdR (3.14)
0o R
and
drR' RR
- 3.15
R~ 2 (3.15)

12
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whereR, R? and RR' come from (2.5) and (2.8). Equations (3.14) and (3.15) ahkeeddn one
numerical integration for each step of integrating (3.8)11) & (3.13)%
The variation of the areal radius down the PNC is

~

dR_/\/ ’-\df_/\/ R
. R +R- =R (1 W) , (3.16)

and its second derivative is

d2R o df 9\ dR
i (0 dt 0\ dh 3.17
dr? (87“ T 675) dr @17
R'R R R’ .. RW' RR
= | [R"— 1—— |+ (- 3.18

9
AN

(3.19)

(B[ R R (AR M\ RE (RN MRE
N w w W2\ 3 R? w w2 W3R

where’ and R were eliminated using (2.8) and (2.7). It is important faetao note that?(r)
may have a maximum value wheié/dr = 0, and at this locus we have

o 2M AR?
R=W = 7+f+T:1+fa (3.20)

and consequently, using (3.13),

?R  6R dz

— = —. 3.21
dr? RW dr ( )
Thus the slope of thé(z) curve is
dd;,  d(1+2)%R . ,dR/dr
dz dz (1+2)R+(1+2) dz/dr
. R <
=(1+z2)|2R+=<(W—-R) |, (3.22)
R
and at the origin we have
1 7
1K (3.23)
HO R z2=0
The definitions for the radial and tangential Hubble rates
R R
Hy=—, H=4, (3.24)

4“TheA =0 special case is much easier, because (2.18) allows onestpate (3.9) without solving (3.14) at every
step.
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represent the metric expansion rates in the radial and méiagelirections, but one needs to be
careful which of these, if any, relates to which observation

Near the origin — the vertex of the PNC — in addtion to (2.26)282(7), we have

W—1, 2—0, R —H [R’}O : j—i—J{O [R/]O : i—f - [R/]O . (3.25)
The origin value ofR’ (and ﬁ’) depends on the choice of arbitrary functions, but # R there,
then R’ is finite and non-zero, whild2R /dr? — R

The LT observational relations may be very diffgrent from BLRW ones, especially near the
maximum inR [93].

Inhomogeneous Models of SNIa Dimming In recent years the LT model has seen quite a
bit of use in investigations of whether the observed dimmihthe supernovae can be explained
as an effect of cosmic inhomogeneity, rather than invokindaek energy’ whose magnitude and
physical origin are obscure.

For the case of an observer that is off-centre, [67] caledlaxpressions for the angular vari-
ation ofdy, Hy, qo, the source number count, addl’/T", and showed the CMB dipole could be
explained this way.

It was first pointed out in Celerier [28] that the observed &Niimming can be explained by
inhomogeneity. That paper used a parabolic LT model and stithat a series expansiondf(z)
could easily manifest apparent ‘acceleration’. This wasegalised to non-parabolic LT models in
[113].

In [5] the authors constructed an LT model that has a low densgion (void) at the centre,
and asymptotically approaches homogeneity. Their funstidd & f have the form (2.33) with

- A« r—r
— g2 — _ 0
M3 = Hloao s M= 2040 {1 tanh( I )} (326)
- Ap r—1r0
_ 772 — _
f2 = HJ_OBO , f = Zﬂo {1 tanh( QAT )} (327)

so thatM goes from~ H? ,(ap — Aca)r? at the centre td1? ,aor? at larger, and similarly forf.
Their 3rd function was fixed via the hyperbolic version of3@), choosing; to be recombination,
and settingR; = a.r wherea, is the RW scale factor at recombination. They then calcdlate
the redshift and the apparent magnitude for a central obseamd found they could obtain good
agreement with observations. They also verified that theydcetain the observed CMB power
spectrum. In [4] and [3] the authors investigated an offteenbserver in two versions of the void
model. They found a marginal improvement in the fit to the S#ita is possible. If the observed
COBE dipole is due to this effect, it requires onlyld Mpc displacement from centre, but the
corresponding quadrupole and octopole effects are thesnadl to match observations.

In [118] it was suggested that innmogeneous models of sapardimming have a ‘weak
singularity’ at the centre. However, this is merely a cohpzint in the density profile, and not a
singularity [79]. Also, [120] showed it is easy to smooth tiemntral density without affecting the
model much.

Ref [15] considered a selection of LT models, with and withdu— a central void model
with ¢ = 0, a uniform present-day density and a varyiflg, a varying H,. with a = 0, both p
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anda varying. All the models had small density oscillations iraed to represent smaller scale
inhomogeneity. It was argued that all of the= 0 models considered are ‘peculiar’.

In [48] the LT functions were chosen to B&/ = Br3,a =0, f =r%/(1+ (cr)?), B was set
from Q,,¢ via (2.37), and: was adjusted to get the best fit to the SNla magnitude-raddhif.
With Q,,, = 0.2 the fit was better than that afCDM.

For observers near the centre of an overdensity, the mo@@Bpagrees withi;, observations
for part of thez range.

[43] also compared two classes of LT models with the SNIa,datizulatingy?. One model
was fixed byH; = H + AHe "/ andQ,,(r) = 2M/(HA R3) = Qo, where H, AH, o and Qg
are constants. The other hag- 0 and(2,, varying. They found that varyingl; is very effective at
fitting the data, but varyin,, is not. The best fit LT model had slightly lowg? than theACDM
model, but including both inhomogeneous expansion andzeonA did not improve the fit.

In [22] two models were considered — a local void model witlnaudtaneous bang time, and
a ‘hubble bubble’ model in which the expansion rédfg is higher locally than far away but the
present-day density is uniform. Each is a quite specificraspater LT model. They confronted
their models with SNIa, data, the BAO dilation scald = [d%,z/H,|'/3, and the limit onH, set
by the age of the oldest stars. Froihcalculations, they concluded that their best-fit hubblbkbe
model fits the data almost as well A€DM.

In [45], void models with 4 or 5 parameters were considered, iawas shown that they can
provide a good fit observations of the SNla dimming, the CMR] the BAO (within 15) and ay?
comparable to thd CDM model. In [46], it was shown that observations of the kiagic Sunaev-
Zeldovich effect already limit LT voids tec 1.5 Gpc, and future surveys will either put tighter
limits on the size or constrain the density and expansiofileso In [47], the authors proposed the
normalised cosmic shear as a test of inhomogeneity. Theyf@almd that LT models still provide
excellent agreement with updated SNla and BAO data.

A similar good fit with SNIa observations, i.e.x&@ comparable to that of th& CDM model,
was found in [42], which considered LT ‘bubble’ models witkodeasingH (r) and constant
Q,,(r). There was no improvement in the fit using a similar model with-zeroA.

For a summary see [29, 30, 20]. The important issue here igldigiht the difficulty of sepa-
rating the effects on the null cone observations of the cogmuation of state, of source evolution,
and of cosmic inhomogeneity. Whether or raBpc scale inhomogeneities are discovered, inho-
mogeneous models have to be taken seriously, firstly bedaligmogeneities on many scales do
exist, and secondly because we should rigorously verifydganeity (instead of just assuming it),
and such testing requires using an inhomogeneous moddiasthe detection of inhomogeneity
is a possible outcome.

Differences between Dimming Models Now the arbitrary functions of any given LT model
determine not only a luminosity or diameter distance retgti; (z) or dp(z), but also a redshift-
space density relation(z). Each chosen model “predicts’sdz) profile, and this will be important
in distinguishing models. Though number counts are not wemplete or reliable today, the
situation is likely to improve rapidly with future redshigurveys. In fact, the different types of
model predict very different(z).
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If the LT arbitrary functions are written in the form of a ceadtbehaviour plus a variation,

M= Msr>(1+AM), f=for?(A+Af), a=ag+Aa, (3.28)
then the leading terms may be related to the central costicalqgarameters via
fo = sign(H3(1 = 2q0)) . Ms = qoH3 (fo/ (H3(1 —2q0))) " ; (3.29)
fa>0: mng=arccosh (1 + foHo f;(fl — 20) ) ,  To = Ms(sinhny — 770)/f23/2 ; (3.30)
f2<0: o= arccos <1+ f2Ho fzsl —2a0) ) . To=Ms(no—sinng)/(—f2)>/?;
(3.31)
ap =to—To (3.32)

which defines a ‘central RW model’. A model with a pure bangetimhomogeneity, may be
described by the functions

f:fQTZ)
q0 20.22,

M = Msr?,
Hy=0.72,

a=ap+ e 1)+ K(e 72 —-1),
[=08/Hy, J=05, K=—0.7/Hy,

(3.33)

Jo=0.7, (3.34)

and using this, we get good agreement wigl{z) from supernova data It has become custom-
ary to compare the measured magnitudes with those expeactiée iMilne model, i.e.Am =

m — mmine = Hlog(L/Lmine). The left plot below showg\m(z) against the supernova data of
Kowalski et al. [73], with the blue line for the given LT modeind the red line for the RW
model with the same central parameters; the middle plot shbe/redshift-space density (humber
of sources per steradian per unit redshift interval timeammaass per source), with blue the LT
model, and red the central RW model; the right plot shps, )/ perit,0 the density as a multiple
of the central critical density, on a constant time slicdnatgresent day, against coordinate raalius
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For a pure mass-geometry-energy inhomogeneity, we caheséfitfunctions to

M=Mr?, f=fr?(1+E("F-1)+G-1)),
©=009, E=82, F=04, G=-T6,

(3.35)
(3.36)

a =ag,

Fy=0.45,

and the following plots show we also get good agreement \nigtStiNIa dath

5For a smoother density profile at the origin, the approacii2®] may be used.
6Both of these curves haved that rivals the least squares quadratic fit to the data.
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There is little difference between them(z) curves of these two and many other LT models,
but theo(z) curves are quite distinct. At present there are many urinégs connected with
estimatingo; the number count data is not sufficiently complete or adeythe relation to total
matter density is not well established, and the evolutiogadfxy numbers and masses is an active
area of research. Still, one may hope this will improve drigcally with the next generation of
redshift surveys. Other ways of testing models, should beymd.

Now, observers are very likely to live on planets, which aighly likely to circle stars in
galaxies, which have a good chance of being inside clustghsnvsuperclusters. In other words,
many observers are likely to be inside regions of higheritergthe far universe is homogeneous
(on average), then a model of an observer inside a densikyrpast have an intervening region of
lower density to compensate the central overdensity. Thengbang time models that reproduce
the supernova dimming, also seem to generate a centralemgty quite well. Of course, varia-
tions in both the bang time and the mass-geometry-energstifuns will surely be needed to get
the best fit to all the data.

3.3 Determining the Metric of the Cosmos

The Metric of the Cosmos project aims to determine the gegnudtour universe from ob-
servational data. This is an ‘inverse problem’: given obsgons such as those described above,
determine as much as possible about the spacetime metpcadtice, one needs to make assump-
tions about the cosmic equation of state, etc, but the gaalrsduce them to a minimum.

An important aim of this project is to determine the degre@ahogeneity in the universe.
The large amounts of cosmological data now flowing in will somake this a real possibility. In
order to do this, it is essential to remove the assumptionoaidgeneity, but since the use of a
RW model is widespread in cosmological data analysis, malyutations will have to be carefully
re-worked. Now angular homogeneity — that is isotropy — isye@ check, and does not require
us to know anything about the PNC. Whatever the variatiorbskovables with is, it must be the
same in all directions. But radial homogeneity is not at aflyeto verify, since the-dependence
of observables depends on several things: the time evnlofithe expansion (i.e. the equation of
state), the source evolution, and whatever radial inhomeigeis present. So although a general
treatment requires us to go beyond spherical symmetry,pjnsting down the degree of radial
variation would be a big step forward.

It was shown in [95] that any reasonable ‘observationalcfionsdp(z) or dy(z) andé(z)
can be reproduced by an LT model, and an algorithm for extigaehe LT arbitrary functions
was given. This algorithm was implemented as a numericalgahare and clarified and extended
significantly in [87, 58, 90].
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For this project, we now need to invert the equations of tlsé daction; we treaf%(z) and
d(z) as given, and we want to determiri¢r), M (r) anda(r). We can use the radial coordinate
freedom to choose

d _
dr
on the observer’s past null cone, so that the solution tg (8.9

—B(r), ie. R =pW, (3.37)

f:to—/orﬁdr. (3.38)

In practice, = 1 andi = ¢, — r is the obvious choice, providing there are no shell crossiigpte
that (3.37) and (3.38) and much of the following only holdtfee single null cone with apei,0).
Putting this in (3.16) gives
W _sow Ty, (3.39)
dr

and using (3.16), (3.37) and (2.5), we find

1<dR>+ﬁ( - A

=— | — A4
V=lw ; ( %_R) ; (3.40)
while (3.13) and (3.37) give
M =W (3.41)
dr
Combining (3.40) with its derivative results in
/ d?R / [
W,:ﬁ(%_%%)_ Aﬂf\i} _(i; _E> (W_%i_R> _ (3.42)
/S AN
Putting (3.37) and (3.42) in (3.11) leads to
» ’ d2R /
2 pA\Pdr R(E)w 4§
which simplifies, on substituting far/’ andIA? from (3.41) and (3.39), to
(1+2) (B L2, 8
de_ _ (76 ﬁ>. (3.44)

dr dR
dr

Since the coordinate is not an observable, we convert altlerivatives ta: derivatives using

G R eh ¢RI _ah1 s
dr  dz ¢’ dr?2  d2? 92 dz 3 dz’ '
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where
dr
P=1 (3.46)
definesp. Then (3.41) and (3.40) become
P , (3.47)
dz
R AR?
1 fai) (1B s
=0\ ds T : (3.48)
z
’ ()
while putting (3.45) in (3.44) and solving fdry/dz, gives
B8p | d2R
de 1 & T & b
- _ _ — =1 . A4
dz ¢<(1+z)+ di 6] (3.49)

wheres, = 3. As stated, the obvious gauge choicgis 1, 5, = 0. Equations (3.46), (3.49) and
(3.47) with (3.48) constitute the differential equatioa®e solved forp(z), r(z), M (z) andW (z).
Thenr(z) anda(z) follow from (2.9)-(2.11), (3.10) and (3.38). Knowingz), M(z), W(z), and
a(z) fully determines the LT metric that reproduces the givefr) andé(z) data. We note that
(3.49) is an independent DE, while (3.47) and (3.46) requ(rg. Also (3.47) with (3.48) is a first
order linear inhomogeneous ODE, for which the formal sotutn known. However it is easiest to
solve all the DEs in parallel as one numerical procedure.

The initial conditions for these DEs are set at the origirhatttme of observationy. The LT
origin conditions applicable to these null cone equatioasavgiven in [87, 90], and are reproduced
and generalised in the appendix.

3.4 Apparent Horizon

In an expanding decelerating model, there is a point on e&lsh Wwhere the areal radius (i.e.
dp)is maximum,dR/dz = 0.7 We denote this point bjg = R,,,, = = zm, and the locus of all such
points is the apparent horizon (AH) — see [78, 51].

But points wherel2/dz = 0 make the DEs (3.49) and (3.47) with (3.48) singular. However
in any given LT modelV is a fixed arbitrary function, so we don’t expect any divergenn the
right of (3.48). Further, it was shown in (3.20) that

dR

By o w_r=o, (3.50)
dz

which open up the possibility that (3.48) is not actuallygsilar on the AH. Similarly, we don't
expectdz/dr or d?r /dz? to be divergent here in a general LT model with co-ordinatsiaeh(3.37),
and in fact (3.21) and (3.45) (with?/dz = 0) show that

_ [_(}’%]m . (3.51)

d2R

dz2

dr?

¥

m m

"This is evident in [91, 92], but first stated explicitly in 66
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Indeed, (3.50) and (3.51) are exactly what happeng,ain the FLRW case. So although there
are no divergencies d,,, the numerics break down. In [87] this was overcome by doirgraes
solution of the DEs (3.46)-(3.49) iz = z — z,,,, and joining the numerical and series results at
somez value z; < z,, — see sections 2.6, 3.3, and appendix B of that paper, ancapfsendix

D below. As pointed out in [58], this phenomenon is not memelgosmological curiosity. At
this locus, and no other, there is a simple relation betwkerdiameter distancé, = R and the
gravitational masa1,, that is independent of any inhomogeneity between the obsand sources
at this distance:

53

o2M,, = R, — Agm , (3.52)
or R=2M if A =0. However, the redshift,,, at which this occurs is not model independent.
Thus the maximum idk provides a new characterisation of our Cosmos — the cosmss nidore
practically, (3.52) and (3.51) provide a cross-check onrthmerical integration: thé/ and ¢
values obtained from the numerical integration must agri¢ie twvose deduced from the measured
R,,, andé,, using (3.52) and (3.51). This requirement enables systewmors in the observational
data to be spotted and at least partially corrected, as waswaking (3.52) in [90]. In fact, the AH
relation (3.52) generalises to the Lemaitre model, whichrimn-zero pressure [2].

Now (3.49) may alternatively be written as

dR (1+2)

d o
dR(1+2)]" 1 [(dR(1+2) /Z&
== - [== 1) == =(+2)dz, 3.54
= 8 |, ﬂ(dz E o RO T (359
by (3.25), consequently giving
z zZ 1D z A -1
r(z):/ @dz:/ d—R(l—i-z) [1—ﬁ/ g(l—i—z)dz} dz . (3.55)
0 o dz o R

Although this appears to have no singularityiaﬁ/dz =0, in fact the term in square brackets in
(3.55) goes to zero, as is evident from (3.54).

Some other attempts at solving a version of the cosmologiwalse problem [11, 69, 118]
got stuck at this locus. See also the discussion of the apphogizon and the ‘critical points’ in
[79].

3.5 Numerical Implementation

Now in reality, the observations do not provide smooth fiomst ?(z) andé (z), they provide a
set of discrete measurements of individual sources. Irrdoderoceed, the data must be collected
into many redshift bins of widtldz, and bin averages calculated. Furthermore, the derigtive
dR/dz andd2R/d=* must also be calculated. So, for eachiffz) and4(z) it is necessary to
fit a smooth function — a polynomial say — to a range of reddbiifs, otherwise mild statistical
variations inR(z) would create wild fluctuations iR /d~ and especiallyi> 2 /d=2. The degree of
smoothing is necessarily a compromise between eliminatiatistical fluctuations and extracting
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inhomogeneity. For example, in [90] a quartic polynomiabyitted to 50 bins of widtldz = 0.001
on either side of the bin in question.

A second difficulty is that there is no data at the origin ftsel where initial conditions for
the numerical integration are set. The first bin extends ftea0 to z = 2, so it provides average
values at around = 0z /2. This is resolved by fitting a near-origin series solutionhaf DEs to the
first few data bins (see appendix C), and starting the nusidritegration further out.

As explained above, the maximum i requires a series solution (see appendix D). In ad-
dition, it has one undetermined coefficiedt;. The numerical and maximum-series results are
joined at some redshift; < z,, and this fixesM;. The numerical integration is resumed at
2z, — zj, Using the series values there for “initial” numerical \edu

Thus the numerical integration has 4 regions — the origiresethe pre-maximum numerical
integration, the near maximum series, and the post-maximummerical integration — which must
all be properly joined together.

In [87] the above programme was implemented as a numericakedure, and tested using
fake data generated from an LT model. The fake observatidatal was exact, and contained no
scatter or errors other than very small numerical errorspomantly, the numerics successfully
reproduced the LT arbitrary functions of the various honmegeis and inhomogeneous models
used to generate the data. This validated the numerica¢guoe as viable in principle.

In [90], the effects of statistical and systematic errorshi@ data were considered. The nu-
merical program was revised to output uncertainty estiméde eachf(z), M(z), anda(z). It
was shown how to use the data at the maximurrﬁi(:zf), via (3.52), to detect and correct for sys-
tematic errors in the observational data. Several exanvgltbsfake data were given. Lastly, the
stability of the DEs (3.46)-(3.49) was analysed, and it wasas they are generally stable, except
for thedM /dz DE which becomes unstable at redshifts larger thanThis issue requires further
attention.

Application of this method to redshift survey data is undarsideration. However, at present,
available data has a lot of scatter/iix), §(z) andn(z), and considerable uncertainty in the source
propertiesL(z), D(z) andu(z) at largerz values. It is particularly likely that studies of the source
properties at large have assumed homogeneity, if not a particular FLRW model. edhaod of
testing source evolution theories, independently of lbss$hhomogeneity, was presented in [56],
which considered multiple source types and observatiosswatral wavelengths.

Combining Data with an Invariant Distance For many purposes, data at the samare
grouped together and averaged, and it is assumed the eararslout. However, as is well known
the peculiar velocities of sources create a scatter walues, especially in clusters, and the ob-
server’'s motion creates a dipole, so although redshift eaméasured to high accuracy, it is not an
ideal monotonic measure of distance. According to Walkamis Etherington’s argument [119, 44]
the source area distandg = (1 + z)dp is independent of the observer's motion. Since this dis-
tance is determined by the geometry of light rays emanatiogn the emission event, it is also
independent of the source motion. Therefore, if the dateewgeiod enough it would be more
correct to combine data with the samye= dy /(1 + z).

3.6 Checking Homogeneity

The LT model requires two physical functionssofo be fully specified, so only models that
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satisfy both conditions (2.31) are homogeneous. As seen above, it isqibrfpossible to repro-
duce one observational function, suchdagz), with a variety of inhomogeneous models, so a
one-function test is not sufficient. Thus a two-functiont issmperative for an unambiguous re-
sult; for example the redshift-space densify) can distinguish between models that fit the z)
data. Clearly, then, the MoC procedure will provide an int@iat test of homogeneity, when there
is sufficient observational data of high precision and catgvless. If the procedure outputs LT
functions that are close to the RW form (2.31) (say withindgk), then this is a strong indica-
tion of homogeneity. Checking for homogeneity is so impairtéat we should use all available
tests. Any deep test of homogeneity will depend on using the correct souvolugon functions.
According to [56], source evolution theories may possild#ydsted with detailed multi-colour data.

3.7 Other Approaches

Although the above papers are the only ones that are seridirsicted at eventually using
real observational data, [11] did develop a numerical cadget on the characteristic initial value
problem, and [104, 70] also discussed the problem in broadste There have been a number
papers looking at restricted versions of the ‘inverse bl[69, 34, 120] that only tried to fit the
dr(z), and typically assumed this is identically th€ DM-FLRW curve. Since this only fixed one
of the LT physical freedoms, the other was fixed by the autlufigice. As already noted, [11, 69]
did not solve the apparent horizon (AH) problem. In [118] @&swmistakenly suggested that it could
not be solved using inhomogeneous models — see [79] for ctmres.

In [69] they chosel (z) to be that of the\CDM-FLRW model with(2,,, = 0.3, Q4 = 0.7, and
setM = Myr3. They considered models with bofh= fzy, in whicha is not uniform, and: = 0,
for which f is not uniform. They were able to find a variety of models thaved their inverse
problem, and some of the varying bang-time models had geédsanable redshift-space density.
They did however encounter difficulties at the AH.

In [34] they assumed (z) has theACDM form (i.e. that of an RW model witk,, = 0.3,
Qa = 0.7, O = 0), a = constant, andf = Hyr?e~2Ho", and they succeed in extracting (r)
only up toz = 0.4. Their comments below their eq (32) about the inversion oktiiot probing
the geometry or being unstable, actually originate fromrtbehandling near-parabolic models
appropriately, and from not identifying thecoordinate freedom. They also seemed unaware of
earlier work on shell crossings in LT models.

In [120] they also assumed thg, of a ACDM universe, as well as = 0, and they used
the Dyer-Roeder equation to fix the coordinate freedom. Tdidyovercome the AH problem,
though the details are unclear. Their solution procedwelwed integrating outwards from the
centre and inwards from the AH, so joining the two parts uplved a ‘search’ through multiple
integrations to get a matching. They tested different degyef smoothness at the centre, but
showed that the results in the outer regions were unaffecibdy also investigated the effect of
a Dyer-Roeder clumpiness parameter that depends, @md showed that this could reduce the
amount of inhomogeneity needed to fit observations.

Evolution of the Redshift Detecting how the redshift of sources evolves with time, may
become an important method of distinguishing models of Sittaming [41, 82, 117, 120].
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3.8 General case

The idea of deducing the metric of the universe from obsematwas first analysed in the
classic paper [80] by Kristian & Sachs, and followed up inrmpdrtant review by Ellis et al [40].
Important early ideas appear in [44, 114]. There has agtdden quite a lot of work on this
problem [105, 106, 107, 108, 88, 89, 8, 6, 7, 103, 1, 59, 9k@sfly for the spherically symmetric
case and its perturbations, though the general case is djffitailt and has not been developed
very much. See a summary in [57]. There is much to be done aspecially turning the general
case into a workable numerical procedure.

4. The Szekeres Metric

The Szekeres (S) metric [111, 112] is a very interesting argkly neglected inhomogeneous
model. Like LT, it is synchronous, comoving, and irrotatgnwith a dust equation of state. The
metric is;

2
(R, — REE/) RQ
2 2 2
kil 4.1
el + o (AP +dq) (4.1)
wheree = —1,0,+1, f = f(r) is an arbitrary function of, E = E(r,p,q), R = R(t,r) and’ =
0/0r, and an orthonormal basis for this metric is

ds? = —dt* +

'—RE'/E
ey =1, errzw’ eppzﬁzeqq' (4.2)

Ve+f
Applying the EFESs, the density and the Ricci and Kretschnsaatars are

2(M' —3ME'/E)

_ 4.
" T RAR-RE'/E) *.3)
R—4A+rp. (4.4)
4 8 4A
K=r?| 27— 2pp+3p%| + — [2A+rp] | (4.5)
3 3 3
where
. 6M

The functionR(t,r) has exactly the same dynamics (2.5) and solution (e.g.-(2.2p) forA = 0)

as for LT. The functionZ is given by
2 2
p—P —Q
(57) +(5°)

where functionsS = S(r), P = P(r) & Q = Q(r) are arbitrar$ The p-q 2-surfaces and? will
be interpreted below; in brief the constant time 3-spacesfaiated by 2-surfaces of constant

E(r,p,q) = g (4.7)

8The functionE is often given in the form

E(r,p,q) = A(p® +¢°) +2B1p +2Baq + C, (4.8)
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coordinater, which have 2-metrics of spheres, planes or pseudo-splagpending on the value
of e.

Thee =0, —1 cases have been ignored until recently [62, 75]. Althougintjties liker, M (r)
etc do not have the same meaning as in spherically symmetritels, curves of constapt& ¢
will be called ‘radial’, ‘p-radial’ or ‘h-radial’, and prefies ‘p-’ and ‘h-’ will indicate quasi-planar
and quasi-pseudospherical quantities.

See [74] for a review of its known properties, or [101] for atréduction. See also [60, 62]
for an analysis of the = +1 ande = 0, —1 cases.

Free Functions The S metric has 6 arbitrary functiorfs M, a, S, P and(Q, which allow

a rescaling of- plus 5 functions to control the physical inhomogeneity. fae = 0 case, the
mapping(S, f, M) — (S/F, fF?, M F3) for any F(r) does not change the metric, the density or
the evolution equations. Thugr) might as well be set td with F' = S.

Special Cases The S model contains the LT model whesa +1 andS, P, (Q are all constant.

It therefore contains the same special cases, and has geoposisibilites at least as interesting as
LT. With E/ = 0 it reduces to the Ellis metric [38]. It also has a KantowskeBs-type limit, and
its null limit is a generalisation of the Kinnersley rockegtric [55].

No Killing Vectors This metric has no Killing vectors [27], but that does not méds even
close to a general inhomogeneous dust solution. It isrtdependence of that destroys any
spherical, planar or pseudo-spherical symmetry. Dedpiténthomogeneity of the model, and the
lack of Killing vectors, any surface of constant timhis conformally flat [10].

Matching to Vacuum Also, any surface of constant coordinate ‘radiugian be joined to a
symmetric vacuum metric with spherical, planar or pseygsleescal symmetry [24, 25, 62]. This
latter means that the S metric generates a symmetric giavih field “outside” each and every
constant- shell.

Singularities ~ The S model has the same singularities — bang, crunch, sfeskings, shell
focussings — as discussed for the LT model in §2.1. The badgmmch, wherg? = 0, still occur
att = a andt = a+2xT. Shell crossings however are more complicated, as theyr agcere
R — RE'/E =0, providedM’ —3M E'/E ande — f are not zero.

4.1 Riemann Projection

To understand the metric componérip? + dq?)/E?, we note that the-q 2-surfaces can be
transformed to 2-spheres, planes or pseudo-2-sphere Rigmann projection:

_ , (p=P) _ 0
e=—1,E>0: 5 = coth 5 cos(¢) ,
(¢—Q) 0\ .
g = coth (2> sin(¢) , (4.10)
_ , (p—P) _ 9
e=—-1,E<0: 5 —tanh<2>cos(¢),
whereA(r), B1(r), B2(r), andC(r) must obey
4(AC—B} - B3)=ce. (4.9)

This last is automatically satisfied by (4.7), so calculadiare easier. Als§, P, Q have a natural interpretation in the
Riemann projection given next.
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e=0:
e=+1: either
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(4.11)

(4.12)

(4.13)

(4.14)

Notice that, withd & ¢ ranging over the whole sphemgch of the spherical transformations (4.13)
& (4.14) covers the entirg-q plane.

In contrastbaoth of the pseudospherical transformations (4.10) & (4.1hwi< 0 < oo, are
required to cover the entigeq plane once; each transformation maps one of the hyperbsihaiets
to thep-g plane. To distinguish the sheets, we chofse be negative on one and positive on the
other. Each constamt“shell” seems to be a hyperboloid with two “sheets”, but walktietermine
whether both these sheets are needed, or even allowed. pretier case, the Riemann projection
may be viewed as an inversion of the plane in a circle, or as@ping of a semi-infinite cylinder
to a plane. These projections are illustrated below.

(p - P) = S tanh(6/2)

<

z

25

/

(p - P)=S(2/8)

7’

S

N




Modelling Inhomogeneity in the Universe

351 1 sph ‘f‘

(p - P)IS

However, the transformations frofp,q) to (6,¢) introduce cross terms in the metric, such as
drdf. Of course, ifE’ = 0 everywhere, this transformation recovers the LT model.

4.2 Propertiesof E

The functionE' determines how the coordinatés,¢q) map onto the 2-d unit pseudosphere,
plane or sphere at each valueof Each 2-surface is multiplied by factdt = R(t,r) that is
different for eachr, and evolves with time. Thus thep-¢ 3-surfaces are constructed out of a
sequence of 2-dimensional spheres, pseudospheres, ek ket are not arranged symmetrically.
Obviously, fore =0, —1 the area of the constah& r 2-surfaces could be infinite, but in the- +1
case it isdm R?.

In thep-q plane,E has circular symmetry about the pojne P, g = (Q, which is different for
eachr. The E = 0 circle
(p—P)*+(g—Q)* = —eS?, (4.15)

hasE > 0 on the outside, but becomes a point i 0, and does not exist f= +1. The divergence

of the metric componentg,, andg,, asE — 0 has a geometric significance that will be discussed
below. TheE’” = 0 locus is also a circle in the-q plane, which can be written

(555 (552 9) -

Fore = 0,+1, this locus always exists, and whes= —1 it only exists if

fe. (4.16)

(8 < (P +(Q)*, (4.17)
with the radius of this circle shrinking to zero as the edgya$i approached. It can be shown these
two circles always intersect, if they both exist.

To see howE'/ E affects the metric and the density, we write= E’/E. Then in the metric
(4.1), g, is a decreasing function of providedz > R’/ R, while for the density (4.6) we have
6M (M'/(3M) —z)
= 4.1
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so that

Op __6M (R//R—M'/(3M))

or_ 4.19
Sor - B (RJR—2? (4.19)
and ifx — +oo
6M
8mp— - (4.20)

Therefore at givem andt values, the density varies monotonically with= E'/E. (The sign of
the numerator may possibly changefasvolves.) Ifz can divergep approaches a finite, positive
limit.

4.3 Spatial 3- & 2-Geometries

It is apparent from the above thatletermines the shape of the constgént) 2-surfaces that
foliate the spatial sections:

e=+1 — sequence of Riemann spheres
e=—1 — sequence of Riemann hyperboloids  (4.21)
e=0 — sequence of Riemann planes

This is confirmed by the curvature of theg 2-spaces; the orthonormal basis components of the
Riemann & Ricci tensors and the Kretschmann and Ricci scalar

2 _ € 2 _ 2 _ € 24 4e? 25 _ 26

Rpwww =% Bow=Row=g K=pr. R=p. “&22
which also showR is a scale length for the curvature. In fact, it is quite polgsio have the
three types of foliation in one S model. The original notatjibl1, 112] has a continuous function
instead ofe. These 2-surfaces have area

dpd
A:RQ// %2‘], (4.23)

which is47 R? whene = +1, but otherwise is infinite.
Note thatg,, > 0 requirese + f > 0, to keep the metric Lorentzian, and so

f>0 — e=+1,0,—1
f=0 - e=+1,0 (4.24)
-1<f<0 — e=+1.

Clearly, the 3-d geometry determined lfymay restrict the possible foliations. For example, you
can't foliate a positively curved space with hyperboloidat you can foliate a negatively curved
space with spheres.

Calculating the orthonormal basis components of the Rienzend Ricci tensors and scalars
of the r-p-¢q 3-spaces, we find

~1(f'/2- fE'/E) ~f
3 3 3
Bowmw = Fownw = 7 m-re/E) @ 0owe = g 429
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2—fE'/E ,
R = "Rayw = 7 <(( R/, RfE, /E)) +§) (4.26)
3 (f'/2-fE/E)?  f
K=+ ( (R RE//E)Q +ﬁ> ) (4.27)
3 2(f'/2— fE'/E)
R= ( (R RE/D) +E> . (4.28)
The flatness condltloi”lR )b)(e)(d@) = 0 requires just
f=0=f". (4.29)

This is not possible fof = —1. Whene = 0, (4.29) would make,., diverge unlesf’ — RE'/E =
0, which in turn would make diverge unless\/’ —3ME’/E = 0. It will be shown this is only
possible as an asymptotic limit.

For ther-p 2-spaces we find

1/2](: 2R
Roene = Bom ="Row =—5 =5
1 (Ey(E,—E'E,/E)—(f'/2— fE'/E) 30
R (R'—RE'/E) : :
) OF
" Ey=5, FBa=73o 4.31
where V=g =% (4.31)

For these surfaces to be flat requileg £, — E'E,/E) — (f'/2— fE'/E) = 0, and the only solu-
tion that can hold over an entire 2-surfaceis= 0 = E’. This is becaus& & E’ depend orp, but
E, & E; don't. Note thatE’ = 0 implies all of S’ = 0 = P’ = Q'. Obviously, these surfaces may
be curved even when thep-q 3-space they foliate is flat.

RW in Szekeres Coordinates Since the RW metrics can be written in the Szekeres form, it
is useful to look at the transformations between Szekerést@mdard RW coordinates — see [62]
for a discussion. Thé = —1 case allows all three types of foliation, which are compdoeldw in

a constant, ¢ = 0, x slice. Blue curves are for the= +1 case, red foe = 0 and green foe = —1.
Note that there’s distortion, as a negatively curved 2em@rfcannot be properly represented on a
plane — notably orthogonal lines do not look orthogonal.

%)f instead the coordinate dependent conditiét),;.q = 0 is used, one gets a more complicated result [62].
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4.4 Quasi Spherical Case

Dipole The functionE describes a dipole distribution [112, 36, 60] round the Resp at each
value, having £’/ E) qx = —(E'/ E)min located at antipodal points, atel = 0 on a great circle
mid way inbetween. From (4.7) and (4.13)-(4.14) we find

S

e , (4.32)
1—cos6
E,:_S'cos@+sin9(P’cos¢+Q’singb)7 (4.33)
1—cosf
so the locusy’ =0,
S'cos+ P'sinfcosp+ Q' sinfsing =0 , (4.34)

is a great circle of thé-¢ sphere. The locations of the extremaif/ E are found by setting

a(E'/E) d(E'/E)

o¢p 0, 00 0, ( )
which give
_& _ P _
tan ¢, = o = cos Ge = €1 eI e ==+1, (4.36)
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P! ! a3 P2 2
tan 6, — Cowe;rlQ singe _ V() S,+ @F (4.37)
!
cosl, = ey 5 , €9 ==+1, (4.38)
V()2 + (P2 +(Q')?

wheree; ande, are independent of and the extreme value is

() o fCTEEEET
E extreme a ? S .

(4.39)

These two points are symmetrically located relative tofe= 0 circle, forming an equator and
two poles — a dipole. Naturally, the dipole orientation eariwithr. By (4.1) and (4.6)F also
creates a dipole variation in thgg, dr metric interval and the density around each constant
2-sphere. The distance between constashells varies withp,q); RE’/FE is the correction to
the radial separatio®’ of neighbouring shellsRS’/S is the forward(¢ = 0) displacement, and
RP'/S & RQ'/S are the two sideways displacemeffis=7/2, ¢ =0) & (# = /2, ¢ =7/2).

E//E Grr p
max — min min
min  — max max

The interpretation is that the Szekeres 3-spaces are uotetrfrom a sequence of non-concentric
2-spheres, each having a density distribution that is Bxadtat's needed to generate a spherical
field around a new centre. Here we show a section through af sgtheres, the dipole on one
2-sphere, and a selection of possiblg surfaces at some moment in time, as well as the dipole on

a single spherical shell, and some possiblg surfaces (of constamtandd = /2.

- |QC%| dipole axis
- circle centres
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Regularity  The conditions for regular origins, for regular spatialrerta, and for the avoidance
of shell crossings are similar to those for LT models — sedi@e®@.2 — except with further
conditions on the new arbitrary functioss P and@. These are laid out in [60], and the case of
non-zeroA is considered in [31]. Near an origi®, — 0, regularity requires

MNRB’ fNR2, SNRTL’ PNRn, QNRn, 0<n<l1. (440)
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The non-concentric nature of the constashells means that shell crossings are more complex
than in LT models. Adjacent-shells will first intersect at the point whegg,. is minimum, and as
time goes by the two will intersect on a circle parallel to f#fe= 0 great circle — i.e. aligned with
the dipole. See [60], and appendix E for the conditions tacatreem.

For a regular extremum we require

f=-1, and M'=f =d =8=P =Q' =0 (4.41)

and the conditions for no shell crossings have to be modifiesee{60].
Apparent Horizons  According to the standard definition, surfatds trapped if, forany null
vector fieldk®, kbk, = 0, we have

k“;alz <0, (4.42)
and the apparent horizon (AH) is the boundary of the trappgibn
k%ol 4y = 0. (4.43)

Now null vectors that are momentarily ‘radiak? = K (t,r,p,q)((R' — RE'/E), jW,0,0), j =
+1, are also geodesig’Vk¢ = 0, if

\_ _K@E-RE/E) j [.(p RE ., RE'
K == R E) W(K(R E>+2K<R E>> (4.44)

This together with (2.8) gives

2K RE'\ /- 2K RE' oM
s ) 2 (T ([T R
= (R E><R+3W> - (R E)( R+f+ S VIET )

(4.45)

so the expansion of these geodesics is zero when (3.52) Aotts= —j; that is, for incoming
rays in an expanding region, or outgoing rays in a collapsaggpn. Thus [112] found® = 2M is
the apparent horizon wheh= 0.

The approach in [60] was a bit different, as it was not reglitetk’® be geodesic, and it was
rather determined whether or not null paths were moving #iislof larger areal radiug. It was
established that, at any given point, the constasttells are traversed most rapidly by null vectors
pointing ‘radially’. (Null paths that stay radial are notagkesic in general.) It was then found that
the locus wherelR/dr = 0 along a radial null direction (geodesic or not) is not cailecit with a
constant- shell, and i-q dependent. This was called the ‘absolute apparent horind@0]. Not
surprisingly, on any constantshell, thed R /dr = 0 locus is (the history of) a circle aligned with
the local dipole direction.

Wormholes  We know light can’t quite get through the Schwarzschild-$kal-Szekeres (SKS)
‘wormhole’, and we know that dense LT ‘wormholes’ are evesslgaversibile [51]. But, if a dense
Szekeres wormhole can be bent round round as shown abovee side is shorter than the other,
does that make it easier for light to get through on the shaitke? In [60] it was found light still
can't get through, and ray paths were calculated and pldttedeveral models. Shown here are
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some light paths (R) and apparent horizons (A) in a Szekavearihole’, showing fast (f) and
slow (s) directiore

crunch
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Now since Szekeres spaces can bend round, this prompts ¢élsdaquof whether we make
a handle topology by joining up the two sides across a boyndére Darmois matching condi-
tions specify how to splice metrics together. (Actually, dan’'t need the embedding to work, or
the amount of bending to be sufficient, as long as the Darmioigtipn conditions are satisfied.)
However it was found in [60] that the matching doesn’t worlithaut creating surface layer. This
result includes the case of spherical vacuum — so the idesoohhole shortcuts — commonly
suggested in context of the SKS geometry — is in fact impdessilthin Szekeres metrics.

4.5 Quasi-Pseudo-Spherical Case

Whene = —1, the constant surfaces are not closed, and the physical and geometric-mean
ing of R and M have to be re-thought. We lay out some basic properties heckattempt an
interpretation later.
h-Dipole  Recall that each shell of constan& r is a two-sheeted hyperboloid of revolution.
Using (4.10) & (4.11), we can write

vS
F=——— 4.46
coshf —v”’ ( )

S’ cosh @ + sinh O (P’ cos ¢ + Q' sin @)
coshf —v
v =sign(E) . (4.48)

E =—

) (4.47)

The E = 0 circle corresponds t6— +oo, and its neighbourhood represents the asymptotic regions
of the two sheets of the hyperboloid of (4.10) and (4.11).
The locusE’ =0 is

S’ cosh§ + P'sinhf cos ¢ + Q'sinhfsing =0 , (4.49)
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which only has a solution if (4.17) holds. It is a geodesichefi-q 2-space, and can be pictured as
the intersection of a plane with a right hyperboloid.

Writing
/ ! . / /.
E' _ _VS cosh +sinh 0 (P’ cos ¢+ Q'sin @) ’ (4.50)
E S
the extrema of’ /E are
! N2 _(PH2 — 2
(2) - VOO s
extreme

wherees = sign(S’). These extrema only exist at finifef
(8> (P +(@Q)*, (4.52)

which is the opposite of (4.17); so on a given constastiell, eitherE’ = 0 exists, or the extrema
of E'/E exist, butnot both.

It follows from (4.50) that this extremum is a maximum whéf& E is negative, and a min-
imum whereE’/E is positive. Thus, for each constanhyperboloid, on the sheet withS” < 0
(i.e. veg = —1), E'/E has a positive minimum and goes-ax as|f| — oo, while on the sheet
with ES’ > 0, E’/E has a negative maximum and goes-tso. We now specify thaf < 0 on the
E < 0 sheet. From the foregoing considerations, if (4.52) hdli=n £’/ E is the pseudospherical
equivalent of a dipole, having a negative maximum on onetsnae a positive minimum on the
other, but diverging in the asymptotic regions of each sheatE = 0.

We see in the metric (4.1) th&FE’/ E is the correction to the separati@, along ther curves,
of neighbouring constant shells, meaning that the hyperboloids are centered diffigrand are
“non concentric”, as sketched below. In particufas’/ S is the forward displacement, adtlP’ /S
& RQ’'/S are the two sideways displacements. The shortest h-radi@nde is wherd’ /E is
maximum.

- hyperbola centres

Regularity ~ Cane = —1 regions havek(t,r,) = 0 for somer,? The derivation of the ‘origin’
conditions (4.40) does not depend grbut whene = —1, f — 0 is not allowed, sincef > 1, so
‘origins’ are not possible.
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The analysis of [62] shows that, to be free of shell crossit®y$2) must hold. Even then only
one sheet of the two-sheeted hyperboloid at eaeh the one with0 > (E'/E)max > (E'/E) >
—oo — can be free of shell crossings. However on that sheet, thdittans are weaker than in LT
— see appendix E. As with the LT case, these are obtained Hyistuthe evolution of?’/R. An
important conclusion is that onfyne sheet of the Riemann hyperboloid should be used to construct
regular models, which means not all of the plane is used.

Regular extremaR'(t,r,,) = 0), are indeed possible. The calculations in [62] lead to

f=1, and M =f =d =58 =P =@Q =0, (4.53)

but note that the conditions for no shell crossings are mobdles at such a locus. This is not
an obscure possibility — thé = —1 RW metric in pseudo-spherical coordinates has a spatial
minimum in R.

4.6 Quasi-Planar Case

No dipole  For thee = 0 case, we find

2
5o 0_;9 7 (4.54)
/ ! nra /o3
o 2AS'HO(P C(;Z¢+Q sing)) (4.55)
/ / / s
B _ S0 s+ sing) (4.56)

and though thell = 0 locus has shrunk to the poipt= P, ¢ = Q, it still corresponds to the
asymptotic regions of the plané= oc. The locusk’ = 0,

S"4+P'lcosp+Q'0sing =0, (4.57)
is obviously a geodesic of theq 2-space, and it exists provided
S"#0 and (P'#0 or Q' #0). (4.58)

There are no extrema df’/E, and it its value extends to bothoo. We interpret the above as
showing that adjacent-shells are planes tilted relative to each other, with¢, = Q’/P’ being
the direction of maximum tilt, but iZ" = 0 they are parallel.

The behaviour found here cannot really be termed a dipole.
Regularity ~ The question of whether an= 0 model may have an ‘origin’R — 0, is a little
tricky. The origin conditions (4.40) requirg — 0. But if the metric and the 3-curvature is to be
regular, we expect

;71 2
lim g, = lim {R/ [1 _ ﬁ%]} (4.59)

r—To r—To f

to be finite and non-zero. SindeF’/(R'E) is not divergent, this implies

R ~\/f~R = R~¢e", bconstant, (4.60)

34



Modelling Inhomogeneity in the Universe

while the p-radial distance is

s:/\/g:drw. (4.61)

In other words,R, M and f may only approach zero asymptotically, and the scale of kueap
foliations becomes ever smaller. This is what happens irpléwgar foliation of thek = —1 RW
metric.

Since the 3-spaces of a completely quasi-planar modelstavfgplanes tilted relative to each
other, they inevitably intersect somwhere, unless

S =P =Q =E'=0, (4.62)

and the no-shell crossing conditions fér> 0 LT models also hold. This reduces the model to
planar symmetry — an Ellis model [38].

As with the other foliations, regular extrema require nalstressings angf — —e, as given
in appendix E. But, by (4.25)-(4.28) and (4.6)— 0 also requiresR’ — RE'/E — 0 and M’ —
3ME'/E — 0, which is the Kantowski-Sachs type limit for this case. Algively, f — 0 also
occurs in the origin requiremeit — 0 above, which can only be approached asymptotically.
Quasi-Planar Limit A S model may have both quasi-spherical and quasi-pseuukrispl
regions, and the boundary surface between them is a quassdimelike 3-surface. It was verified
in [62] that thee = 0 case and projection are suitable limits of both ¢he +1 cases.

4.7 Physical Discussion of the e¢=—1,0 Cases

Role of R

In the metric (4.1) and in the area integral,= R? [ 1/E*dpdgq, the factor R* multiplies
the unit sphere or pseudosphere, and therefore deternmieaadagnitude of the curvature of the
constant(t¢,r) surfaces (4.22). By (4.25)-(4.28), it is also a major fadiothe curvature of the
constantt 3-spaces. Therefore we view it as an “areal factor” or a “atume scale”. However,
whene < 0, it is not at all like a spherical radius. We note that when—1, there can be no origin,
but R can have maxima and minima avaries, while in the = 0 case,R cannot have extrema,
and it can only approach zero asymptotically.

Role of M In (2.5), M looks like a mass in the gravitational potential energy tedfnthe
evolution equation, while in (2.7} determines the deceleration & Fore = +1, where the
surfaces of constamtare spheres enclosing a finite amount of matter, the fundtién) does play

the role of the gravitational mass contained within a comgVradius”r. Fore < 0 however,R

is not the spherical radius that is an important part of thésas in their original form, and/ is

not a total gravitational mass, since the constaatr surfaces are not closed. Consequently these
ideas need revising.

In fact, the impossibility of an “origin” or locus wher&/ and R go to zero where = —1
means thafl/ must have a global minimum, and indeed regular extrenfaamd M/ are possible.
Therefore the locaM value is not independent of its value elsewhere, and integfahe density
over a region always have a boundary term, suggesting the \@&lM (rather than its change
between two shells) is more than can be associated with aitey fiart of the mass distribution.
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In e = 0 models, an asymptotic “origin” is possible, but not reqdjreegular maxima are not
possible, and regular “minima” are actually asymptotigims. So, with an asymptotic origin (as
occurs in the planar foliation df = —1 RW), the boundary term could be set to zero.

Nevertheless, the central roles®fand M are confirmed by the fact that the 3 types of Szek-
eres model can be joined smoothly to vacuum across a conssantace at which the values &f
and M must match. The vacuum metric “generated” by the Szekerstisdistribution must have
spherical, planar, or pseudospherical symmetry, and ih,dcis the sole parameter, whilg is
an areal factor.

We note that, even in the Poisson equation, the gravitdtiooi@ntial does not need to be
associated with a particular body of matter, and indeedhivtainiquely defined for a given density
distribution.

Therefore we find thad/ is a mass-like factor in the gravitational potential energy
Role of f Asshownin 84.3, and as is apparent from the metric (4.1){uhetion f determines
sign of the curvature of the 3-spate- const, as well as being a factor in its magnitude. In the
case,c = +1, this 3-space becomes flat (represented in unusual cotedjnahenf = 0. In the
guasi-pseudospherical case, wjth- 0 it becomes ‘flat’ if the signature is made pseudoeuclidean,
(—++). In the quasi-planar cas¢,= 0 is possible as a Kantowski-Sachs type limit.

As with LT, f appears in the gravitational energy equation (2.5) as tthiedotal energy per
unit mass of the matter particles, and we do not need to révisénterpretation. Therefore, this
variable has the same role as in quasi-spherical and sphgigymmetric models.

Role of £ As we have seen, far= +1, £’/ E is the factor that determines the dipole nature of
the constant shells, and foe = —1, it is the pseudospherical equivalent of a dipole, excegitttie
two sheets of the hyperboloid each contain half the dipald,aaly one of them can be free of shell
crossings. The shell separation (along tHames) decreases monotonically BS/F increases. If
E’' =0, it is uniform, otherwise it is minimum at some location aridetiges outwards. Far= 0,

the effect of £’ /E' is merely to tilt adjacent shells relative to each other,dnly the zero tilt case
(E" = 0) is free of shell crossings.

Density Distribution For e = +1 models, the density has a dipole variation around each
constant sphere, though the strength an orientation of the dipolesavithr. Fore = —1 models,
which must have’ > 1, it was found that, iff’/(2f) > M’/(3M) and there are no shell crossings,
the density is at all times monotonically decreasing with £/, but asymptotically approaches a
finite value ask’/FE diverges. Therefore the density distribution on each dhehat of a void,
but the void centres on successive shells can be at diff¢fenj or (6,¢) positions, in other
words, the void has a snake-like or wiggly cylinder shapee Winimum density is only zero if
M'/(3M)=—(E'/E)max Farfrom the void, at large, the density is asymptotically uniform with
p & q (i.e. with ¢), but can vary withr. However, wheref’/(2f) < M'/(3M) everywhere, an
initial void in a constant: shell can evolve into an overdensity.

The no shell crossings conditions imply limits on how far liation of the minimum density
can be displaced between shells with different

4.8 Applications of the Szekeres Metric

The Szekeres metric was not used to model cosmologicakstascuntil very recently.
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In [12], models of voids next to superclusters were congédjcand it was found that the
growth of the supercluster is strongly enhanced, relativbé linear perturbation approach.

In [14], it was found small voids surrounded by large ovestiies evolve more slowly than
isolated voids, while large voids enhance the evolutiondjd@ent superclusters.

A swiss-cheese model based on Szekeres inhomogeneitiasse@én [16] to investigate the
effect of non-linear inhomogeneities on the CMB. While cemgated inhomogeneities have a tiny
Rees-Sciama effect, the effect of uncompensated inhonedggnis around- 10~3 and so could
be responsible for the low multipoles in the CMB.

The effect of volume averaging was considered in [17] andai$ found the results are the
same as in the LT case, c.f. [52].

A generalisation of the LT void models for SNIa dimming of Z3vas given in [71]. They
used a quasi-spherical S model with quite restricted amyitiunctions and few parameters. This
allowed some angular variation ify, (z). It was shown that the model fits the data almost as well
as theACDM model, even though the potential of the S model has hdrei§n explored.

Shell crossings in certain specific examples of higher dsiogral quasi-spherical models
were considered in [31]. These authors have also investigg¢neralised quasi-spherical mod-
els, including collapse and the occurrence of “shell foryggsnaked singularities, often in higher
dimensions and involving non-zero pressure or heat flux.

5. Conclusion

The universe is of course very inhomogeneous on many scadally understand how these
structures evolve, and properly analyse our observatialgeguire the non-linearity of exact
inhomogeneous metrics.

Up to now, homogeneity has been assumed, and was key to mpidggss. In the age of
precision cosmology, we should thoroughly test this assiomand quantify how good an approx-
imation it is on each scale. Nearly all data analysis assuh@RW metric. To be sure we avoid
circular arguments, there is an urgent need to re-do alutzlons in a general non-homogeneous
metric. The methods of inhomogeneous cosmology will be aarg@l component of this endeav-
our.

Lemaitre-Tolman models have produced a wide variety ofaéstang results, and the investi-
gations are far from exhausted.

The Szekeres models have a lot of flexibility, and can be usedaddel quite complex struc-
tures — but they have been very little investigated.

There are plenty of opportunities for good research.

A. Near Bang and Near Parabolic Series
Near the bang, wherR = 0, (2.5) is dominated bgA//R, and the exact solutions (2.9)-(2.16)

for A = 0 involve the cancellation of nearly identical terms, thuseyating large numerical errors.
Taking our cue from th¢ = 0, A = 0 solution, (2.10), i.eR = (9M (t —a)?/2)'/3, we write R as
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a series,
R:ZRisi, 3:71/3:(75—0,)1/3, (A1)
=1
and put it into (2.5) in the form

3RR*=6M +3fR+AR?. (A.2)

Solving for each power of in turn we find

3V2 23V3 U 1894V* VU 3293V°  45V32U
R=Rys*’|1+V "4 - - - A.3
29 ( + 7 + 63 4 4851 T 7007 + 2002 ) (A-3)
9M\ V3 9fs?  fs? 9 \V? AsS
h === = =<2 = A.4
where ( > > VS or T o <2M2> - U= A4)

In the case\ = 0, this is also the near-parabolic series for snfalnds not small). Whem\ # 0,
and (2.5) is integrated numerically, smdlls not problematic.

It is a good idea to have more terms in the series than the biienom, so that there is a
range where both the series and numerical solutions areaecand each calculation provides a
check on the coding of the other.

B. Near Origin Series for Observational Relations

When calculating, R, z andé for an LT model with givenf (r), M (r) anda(r), the origin,
where all but anda go to zero, requires special numerical treatment. Thegefds useful to have
a series expansion for the null cone quantities in the neigitimod of the origin. Writing

R:iiRijriétj, St=t—tg, (B.1)

i=1j=0

we can solve the evolution equation (2.5) for the coeffi@dtyt, whenj # 0,

2M; AR, M RioA
Ry =4 =2 Rip = —
11 \/RIO + fo+ 3 12 QR%O—'— 6
My f3 MsRy RigRaoA\ 1 My  M3Ry Rao)
Ry = =243 _ . Ryy—— B.2
21 <R10 2 RZ, 3 Ry’ ®T 2R, RS, t— o (B2

but the Ry, or equivalently the origin values at’, R”, R", etc, must be found by numerical
integration, e.g. using (2.8) & (3.15). Then using

o0 [oe) o0
M:E M;r*, fzg fir', a—E a;rt,
=3 =2 =0
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and solving (3.9), (3.11), (3.16) and (3.13) power by potearls to
RyoR11

t1=—Rio, to=—Ro+ 5 (B.4)
3M3z  fo My f3 MzRyy RigRoA\ 1
R _ Lo (My fs_ L B5
z=Ru, 2 2R10+2+<R10+2 o) +— R (B.5)
Ry =Ry, Ry=Ry—RioR11, (B.6)
3Ms 3M; [ 3Ms;
o= 200 = 208 (200
2= R 3 2, (Rlo +f2>
2M3My  6M3 Rag 4RZ MyAN 1
—3 M- 4 M, —2M3RigRogA + ——— | ——
+< 3f3+4Myfo+ Rio + 2, 3R10R20\ + 3 )
(B.7)

C. Near Origin Series for the Metric of the Cosmos

Not only do f(z), M(z), 6(z) andR(z) all go to zero at the origin; = 0, z = 0, but more
importantly we don't actually have any observational datthe origin. Therefore, we fit a series
solution to the data from the first few data bins. We write thetbitrary functions as Taylor series
in powers ofz,

R:zS’:iRizi ) 6:iKizi , (C.1)
=1 =2
f:irizi, M:iMizi, f:ifizi. (C.2)
=1 =3 1=2

The coefficients in the? andé series are determined by fitting polynomials to the obsemat
data near the origin. The null cone DEs, (3.46), (3.49),73.4nd (3.48), with3 = 1, are then
solved power by power, from which we find the coefficients @&#hM, and f series. The results
of a Maple calculation are

o R\ 2Ry  Ks\ 3R; 5Ky Ks KyRy\ ,
T—R1z+<R2+ 2>z +<R3+ 3 + 6>Z + | Ra+ 1 + 2 +12+ R, z

4Ry Ky TK3 Ko 13Ks Ry KRy K2 KoR)?\ -
Re4+—A 224 178 722 K —
+( 5175 +20+60+15+{ 3t 75 }12R1 AR, | 20R; 12RZ)°
(C.3)
M Ky Kg Ky AR% Ky K22 2
e e -2 j (et U Qe
23 3+4z+<5+{ 3 [10 1R}
Ks AR2Y K3 (1 AR? ARRy, TK3\ Ky (1 Ry K2\ 4
2 1——A V22 JZ —_= = 2
+(6+{ 5 /12 276 T3 ThrSs TR BRR)T
(C.4)
f 1_AR§_2K2 (4 AR%+2ARlR2_ Ky K3 2K3Ry
22 3 3Ry 3 3 3Ry 2R, 3R}
5 AR? AR2 K] ARy AR}
S 2 9R, + 2Ry — —2 | — 2
+<4 6 3 [ 2+ 2l 30} 3 36

39



Modelling Inhomogeneity in the Universe

K; 11K, 2K, 2K;R3 KsRy 2KyR: 29K2 )\ ,
— — — Z
6R1 30R; 5R; 3R} 2R? 3R 180R?

3K2 Kg AR1 KQ ARQ

3
- == 2 2 _——— — 2 el
+< 5 {R2+ Rs+2R4+ 10 12} 3 {R2+ Rs+ 5 } 3

R A2R? 19K, K. K K
T 2 R, 1 2 A3 4  Rs
2 9 20R; 4R; 10R; 3R,

11K R K R 2K R K2 2K K
+{ 2+2K4} 2+{—2+K3} 3+ 2414 2 + 243

6 5R2 3 2R2 " 3R?  180R?2 = 9R2

Ko R:  (11K2 Ry | 2K3R}\ 5
e N O AK,Rs b —2 C5
{3 * 3}23? { 5 R RRs T 3R )? (€3

Thena is found from a numerical integration of (2.5), using (3,JfYthe form

2(M/2°)

AS? R
S .

(/) S=2

. (C.6)

S
d .
a=tg—7—1, T:/ —‘.S, where S? =
o S

The accuracy of the series is estimated from the ratio ofdbednd first terms. If is the
maximum acceptable error (comparable with expected naadeziror), then the value where the
program changes from series to numerical integration isrgby

Mg 20 Mz \ 3
o z<<—3L> . (C.7)

M323 M6
D. The Near-Maximum Series on the PNC

Nearz = z,,, where the maximunk,,, = R(zm) occurs, we can solve the DEs of the PNC by
writing the LT arbitrary functions as Taylor series in powef Az = z — z,,:

R=Rp+) RN,  6=Kn+Y KAZ, F=rp+) rdd, (D.1)
=2 i=1 =1
M=Mup+Y MAZ,  J1+f =W=Wu+> WA, (D.2)

i=1 i=1
The coefficients of the series fér M, andWW are obtained by substituting these series into the
DEs (3.46), (3.49), (3.47), and (3.48), again witk= 1, and the coefficients in th8 andé series

are found from polynomial fits to the observational data rieamaximum inR. Using a Maple
program, we find

—2R, R
900:7“1:K4m2, (D.3)
K 1 R,,
@1—T2—<{K—m—1+zm}R2—3R3>K—m, (D.4)

2K,  K? N 2K N 1 R
= T = —
2= 3K, 2K2  3Kn(l+zm)  2(+zm)? [ 2
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K 1 3R 2R2 \ R
SR (it R el S i pnis N oL (D.5)
Kn (14zn) [ 2 3R | K,
Kg 2K1K2+ K% + KQ
=T = —_—
ps= T 2K,  3KZ | AK3 ' 2K, (1+ 2m)

C12K2 (14 2p)  AKp(1+20)2  4(1+2,)3

Ky 3K? K 3
+{—2— L4 —+ )2}}%3

5K2 K, 1 }
2

K, 4K?2  Kn(1+zn) 4142z,
K 1
+ {—1 }<2R4)—5R5

K,, 1 + Zm,
K 1 R} 3ReR3\ R
Y k. A (D.6)
6K, 2(1+zn) (Rn 2Rn | Kn
2Ky K1K3 2K3 KK? Ki 2K3
pa=15= - - + - +
5K,, 2K2 9K2 = 2K3  8Ki  5K,(1+zn)
11K, K> K3} K?
18K2 (1+2m) AK3, (14 2y)  9KZ(1+2y)?
K, K 1
— R
6Km(L+2m)? | 12Km(l+2m)? 801 +zm)4} 2
3Ky KK N 3K N 3K,
4K, K2 ' 8K3 ' 4AK.,(1+zy)
5K? 3K 3
8K2 (1+2m) 8Km(l+zm)?2 8(1+zn)3 [ °
4Ky  Kj 4K, 1
-1 R
+{3Km K2 3K (14 2m) +(1+zm)2} 4
K 1 5R
- —— V0 6Rg
Kn (Q+4zm) [ 2
2K> 19K, 1 R?
+ + 5 (o
45K, 90K, (14+2zy)  6(14+2,)% | Rn
I 7K1 23 R2R3
20K, 20(1+2zn) [ Rm
3R3 26RyRy 8R3 \R
R e (D.7)
4R,,  15R,,  45RZ | K,
AR? | R
My, ={1-—2=3—" D.
m { 3 } 5 (D.8)
My =M, i.e. undetermined (D.9)
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K 1 My ARy K2
M= d B M Amfy By D.10
2 {Km+1+zm} 2 2 2R, (D-10)
K K1 Ry | My
Ms = S e
3 {Km+Km(1+zm) Rm} 3
K1 1 )\mRz )\mR3 KmKl
P gt - - D.11
{Km 1+zm} 4 4 2R, (011
Kg Ko KRy R3 Ry My
My={ =2+ - -2 2 A7l
Km  Kpn(l+2zm) KmRm Rm BRn(l+zy) [ 4
B 5Am K1 20Ky AnKP K2 Ryt 1_ARZ,L 2R3
36Km(1+2m) 9K,  24K2 G6RZ  24(1+zp)% [~ 4 (9Rn,
Ky 1 Am By K12 KoK, K?
_ A Rs — _ - - m . (D.12
{8Km+8(1+zm)} 5776  8R, 3Rm 24Rn(1+2z7,)? (012)
where
An=1—AR?, (D.13)
and
M,
=1 D.14
W K. (D.14)
Ml )\mRZ Km
Wy = - = D.15
" Kn(lt2m)  Km Ry’ (D-15)
. RQMl Kl 3 )\mRQ
Wa= Rme+{4Km 4(1—|—zm)} K,,
3AmRs K
- - D.16
4K, 2R’ (D16)
Ry My
Ws=—{R
’ { 3*(1+zm)}Rme
MKy AnKP 2K AmK1
9K,, 12K2 ' 3R2, ' 36Kn(1+zp)
N A Ry 8\nR3
6(1+2m)* | K 9RmKm
s AmBRs  2\mRy
4K, 2(0+2zpm) [ Km  3Kn
K K
2 m (D.17)

" 3Ry 6Rn(1+2m)%"

These are generalisationsAc# 0 of the results in [90], including a small correction in thepees-
sion for My. Note that the coefficients of th€z) andy(z) series are fully determined from the
data, but in thel/(z) andW (z) series, the coefficient/; remains undetermined. In other words,
its value is fixed by data elsewhere, not by dat&at
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E. Conditions for No Shell Crossings or Surface Layers

The following table presents the conditions that will eesarmodel has no shell crossings
or surface layers at any time in its evolution. ko +1, the first group of conditions are those
that apply to the LT model, and the second group are the eatrdittons needed in the S model.
The Ellis models [38] are the= 0, —1, equivalent of LT models. Although the no-shell-crossing
conditions have not been explicitly studied for them, thayp be deduced by setting, P & Q

constant.

‘ S/7 Pl, Q/

>0

VEPHPPHRQ) M
S — 3M

=0
a' <0
but not all 3 equalities at once

VE2PHE2HQ)? _ g
S = o7

(no condition wheref = 0)

<0

T +d >0
a' <0
but not all 3 equalities at once

R">0
neck

M =0,f=0d=0

f = —1for no surface layer
T//_|_a// >0

a” < 0

SIZO,PIZO,Q/ZO
\/(S//)QJF(P//)QJF(Q//)Q
S

M
= 3M

R"<0
belly

M =0,f=0,d=0

f = —1for no surface layer
T//+a// <0

a" > 0

S/:O’P/ZO,QIZO

_VEPEEPEQY |
S = 3M

<0

all

M <0

VEPHEPHRQ? o M
S = 3M

<0
a' >0
but not all 3 equalities at once

_VEPHP? @2
5 = o7
(no condition whergf = 0)

<0

T +d <0
a >0
but not all 3 equalities at once

43




Modelling Inhomogeneity in the Universe

‘6 ‘R, ‘f ‘S/ ‘M’,f’,a’,P’,Q’

(82 > (P')* +(Q")?

MV (E)P=(PP—(@Q)?

=—1[>0|>1|ES">0|3M= g

£V EP(P2(Q)
= S

(82> (P)?+(Q')

' (52— (P2 —(Q)?
<0|>1|ES <0 é\waJr\/ 5

' VEP(FR(@)?
a >0
=0 [>0[>0]=0 M'>0, f'>0, o <0,
P,ZO, Q/ZO
:0 :0 :0 Ml:Oi f/:01 a,:()]
P,ZO, Q/ZO
<0|>0|=0 M' <0, f'<0, a>0,
P,ZO, Q/ZO
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