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We investigate the jet quenching parameter in the case of a fast moving quark in an anisotropic
plasma. In the leading log approximation, strong indications are found that the transport coef-
ficient increases with increasing anisotropy. Implications for the phenomenology at RHIC are
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The transport coefficient q̂ in an anisotropic plasma

1. Introduction

In this talk, which is based on the work [1], the transport coefficient in an anisotropic but
homogenous plasma at high temperature is discussed. The quoted paper contains a full list of
references.

The observation at RHIC of a strong suppression of large momentum particles in Au-Au colli-
sions when compared to proton-proton collisions scaled with the number of participant nucleons, is
certainly a strong evidence for the formation of a dense partonic medium, as e.g. reviewed recently
in [2].

Jet quenching is usually attributed to radiative parton energy loss in the medium (for reviews,
see: [3, 4, 5, 6]), where the properties of the medium are encoded in the transport coefficient q̂ that
is defined as the ratio of the mean p2

t , transfered from the plasma to the hard partons propagating
through the medium and the hard parton path length in the medium. Therefore, the jet quenching
parameter is also related to the pt-broadening of the energetic parton. More precisely, it is given by

q̂ = ρ

∫
d2q⊥q2

⊥
dσ

d2q⊥
, (1.1)

where ρ is the number density of the constituents of the medium, and dσ

d2q⊥
is the differential

scattering cross section of the parton (massless quark or gluon) on the medium. Depending on the
model used in phenomenological works and because of the many theoretical uncertainties, q̂ may
be quoted in wide range of 0.5−20 GeV 2/ f m see e.g [7, 8]. Therefore, the information about the
nature of the medium contained in the transport coefficient is still uncertain. In these studies, so
far, the medium is assumed to be isotropic.

It has been found (see for a recent review: [9, 10] and e.g. [11, 12, 13]) that the physics of
anisotropic plasmas differs from that of isotropic ones, because of the presence of plasma instabil-
ities in the former. Due to these observations it requires to reanalyse q̂ in the context of anisotropic
plasmas. Momentum broadening in a homogenous but locally anisotropic high-temperature system
for a heavy quark induced by collisions has been discussed recently [14] (see also [15, 16]). To
include the finite temperature dependence in the quark-medium interaction we shall consider the
thermal quark self-energy [17] in the approximation where the hard quark of momentum p remains
on-shell at temperature T = 0. Thus, Eq. (1.1) reads,

q̂ =−g2CF

2p0 Im
∫ d4q

(2π)4 q2
⊥ 2πδ+((p−q)2)(1+ f (q0))Tr [p/γ

µ(p/−q/)γν ]∆µν , (1.2)

(c.f. Fig. 1)

where f (q0) = (exp(q0/T )− 1)−1 is the Bose-Einstein distribution, and ∆µν denotes the gluon
propagator. In the eikonal approximation, when q0 << T and q0/p0 → 0, one may simplify further
Eq. (1.2) :

q̂ =−g2CF Im
∫ d4q

(2π)4 q2
⊥

2T
q0 2πδ (q0−~V ·~q)

p ·∆ · p
(p0)2 , (1.3)

where ~V = ~p/p0 is the quark velocity. In what follows, we shall consider a massless quark,
therefore we have ~V 2 = 1. Concerning kinematics: ~V ·~q = |~q|cosθpq = q0, q2

⊥ = |~q|2 sin2
θpq =

|~q|2(1− x2) with x = q0/|~q|.

2



P
o
S
(
H
i
g
h
-
p
T
 
p
h
y
s
i
c
s
0
9
)
0
0
9

The transport coefficient q̂ in an anisotropic plasma
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Figure 1: Diagramatic representation of Eq. (1.2).

As already pointed out in [14] this equation (1.3) tells us that all the information about the
medium, either isotropic or anisotropic, is contained in the imaginary part of the gluon propagator
which is evaluated in the Hard-Thermal-Loop framework.

2. q̂ from Hard-Thermal-Loop

In the Hard-Thermal-Loop approximation [17, 18] the inverse retarded gauge-field propagator
in covariant gauge reads

(
∆
−1)µν

=−q2gµν +qµqν −Π
µν − 1

λ
qµqν . (2.1)

The gluon self-energy is given by

Π
µν(q) = g2

∫ d3~p
(2π)3 vµ ∂n(~p)

∂ pβ

(
gνβ − vνqβ

q · v+ iε

)
, (2.2)

where vµ ≡ (1,~p/|~p|) is a light-like vector describing the propagation of a plasma particle in space-
time.

Following [11, 13], the phase space distribution function for an anisotropic plasma is taken as
follows

n(~p) = N(ξ )niso

(√
~p2 +ξ (~p ·~n)2

)
. (2.3)

Thus, n(~p) is obtained from an isotropic distribution niso(|~p|) by removing particles with a large
momentum component along ~n. N(ξ ) =

√
1+ξ is a normalization factor which insures that∫

d3 p n(~p) =
∫

d3 p niso(~p). In what follows, we shall omit this factor. Its effects on q̂ will be
discussed at the end of the section.
For evaluating Eq. (1.3) we choose the reference frame in which the initial energetic (hard) quark
propagates along the z-axis, i.e, ~V = (0,0,1), whereas the beam nuclei collide along the y-axis,
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The transport coefficient q̂ in an anisotropic plasma

which is the direction of anisotropy, denoted by the three-dimensional unit vector n = (0,1,0),
namely, ~V ⊥~n which refered to a quark produced at mid-rapidity .

For an anisotropic plasma, the gluon propagator reads

p̂ ·∆ · p̂ = ∆A

[
1− x2−

x2q̂2
y

1− q̂2
y

]
+∆G

[
x2(q2−α− γ)+

x2q̂2
y

1− q̂2
y
(ω2−β )−2x2q̂yδ

]
, (2.4)

where
∆
−1
A = (q2−α) , (2.5)

and
∆
−1
G = (q2−α− γ)(ω2−β )+δ

2~q 2ñ2 , (2.6)

with the transverse momentum component q̂y =~q ·~n/|~q| = qy/|~q| into the direction of anisotropy.
ω = q ·u where uµ is the heat-bath vector, which in the local rest frame is given by uµ = (1,0,0,0)
The functions α,β ,γ and δ , are obtained from Eq. (2.2). Explicit expressions maybe found e.g. in
[11, 14].

The contribution of ∆A to q̂ of Eq. (1.3) is considered, which even to LL accuracy shows the
possible presence of the plasma instability. In performing the |~q|= q−integration, the contribution
at LL accuracy reads

q̂A =−g2CFT
4π3

∫
dΩq

1− x2

x

[
1− x2−

x2q̂2
y

1− q̂2
y

]
I(x,α) , (2.7)

with

I(x,α)' Imα

(1− x2)2

[
1
2

ln
T

mD
+

π

2
Reα

Imα
Θ(−Reα)

]
, (2.8)

where

Imα '−π

4
x(1− x2)m2

D

{
1+

ξ

2
[3q̂2

y−1− x2(5q̂2
y−1)]

}
, (2.9)

and
Reα '−1

3
ξ q̂2

ym2
D , (2.10)

with mD the isotropic Debye mass. The second term in Eq. (2.8) has to be kept, because it reflects a
singularity for Imα ∝ x→ 0 due to the anisotropy ξ > 0 that reflects the plasma instabilities present
in an anisotropic plasma.

At small anisotropy, i.e., ξ � 1, analytic calculations are possible. Following [14] the con-
tribution from the first term in Eq. (2.8) to q̂A is denoted as regular. After performing the angular
integrations in Eq. (2.7) it leads at LL order with T >> mD to

q̂reg
A =

g2CFm2
DT

8π
ln

T
mD

(1+O(ξ 2)) , (2.11)

with no contribution at first order in ξ . Applying the same procedure for the second term ∆G we
obtain
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The transport coefficient q̂ in an anisotropic plasma

q̂reg
G =

3g2CFm2
DT

8π
ln

T
mD

(1+O(ξ 2)). (2.12)

with no singular contribution at this order.

Summing the two terms Eqs. (2.11) and (2.12) the LL transport coefficient in the limit of small
ξ up to O(ξ ) becomes

q̂reg
anisio = q̂reg

A + q̂reg
G =

g2CFm2
DT

2π
ln

T
mD

(1+O(ξ 2)), (2.13)

which reproduces q̂ in an isotropic plasma (ξ = 0).
Next the anomalous contribution [14] due to the second term of Eq. (2.8) is evaluated. In LL

order only the behavior for x→ 0 is relevant. With Eq. (2.10) it gives

q̂anom
A ' g2CFm2

DT
24π2 ξ

∫
dΩq

q̂2
y

x
, (2.14)

inducing a logarithmic singularity with x = cosθpq. The contribution to q̂anom
G starts at O(ξ 2).

We note that the anomalous part (2.14), that is the first correction produced by the anisotropy is
positive. Therefore, the transport coefficient is enhanced by the anisotropy.

To cut the singularity we suggest three possibilities:
(i) One may follow the detailed and plausible arguments given in [14] that this soft singularity

is screened by O(g3) terms in the gluon propagator, i.e. beyond the HTL approximation under
discussion. It leads to the replacement of Imα in the second term in the denominator of Eq. (2.8)
by Imα ∼ x→ x+ cg, i.e. it is suggestive to cut the singularity in (2.14) by

ξ

∫ dx
x
→ 2ξ

∫
0

dx
x+ cg

∼ 2ξ ln
1
g
∼ 2ξ ln

T
mD

. (2.15)

This way a finite result is obtained,

q̂anom
A ' g2CFm2

DT
2π

ln
T

mD

ξ

6
, (2.16)

which shows a positive, but weak dependence on ξ as a sign of the anisotropy for ξ > 0..
(ii) The origin of the 1/x singularity is traced back to the Bose-Einstein distribution f (q0) ∼

T/q0 in Eq. (1.2). Pragmatically, in the anisotropic case, this behavior could be modified by q0 →√
(q0)2 +ξ (~n ·~q)2 = q

√
x2 +ξ q̂2

y , q0 > 0. On mass-shell this replacement gives the distribution
in Eq. (2.3), and leads to

ξ

∫ dx
x
→ 2ξ ln

1
ξ

. (2.17)

(iii) To form the anisotropic configuration in momentum space a characteristic time scale is
present of the order τc ∼ O(1/gξ T ), for not to large ξ . It is then natural to cut the energies of the
constituents in the heat bath by |q0| ≥ 1/τc > gξ T , and

ξ

∫ dx
x
→ 2ξ ln

1
gξ

. (2.18)

In summary all three options Eqs. (2.15 - 2.18) lead to a positive contribution of O(ξ ) at LL
order to q̂aniso. Also, if we take into account the normalization factor N(ξ ) one gets an additional
enhancement of q̂ by a factor

√
1+ξ ' 1+ ξ

2 at small ξ .
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The transport coefficient q̂ in an anisotropic plasma

3. Conclusion

To summarize, the transport coefficient for an anisotropic plasma is shown to be larger than
that in an isotropic one, at least at small anisotropy for which the calculations are performed.
However, a detailed quantitative study, for larger anisotropy, is needed to get an overall estimate of
anisotropy effects on the jet-quenching parameter and for possible phenomenological applications
at RHIC and LHC. Indeed, a better handling of the theoretical value of the transport coefficient
can be essential to distinguish the various phenomenological models. Note that similar conclusions
have been reached independently in [16, 19, 20, 21].
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