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Observational data imply the presence of superluminal electric currents in pulsar magnetospheres.
Such sources are not inconsistent with special relativity;they have already been created in the
laboratory. Here we describe the distinctive features of the radiation beam that is generated by a
rotating superluminal source and show that

(i) it consists of subbeams that are narrower the farther theobserver is from the source: sub-
beams whose intensities decay as 1/R instead of 1/R2 with distance (R),

(ii) the fields of its subbeams are characterized by three concurrent polarization modes: two
modes that are ‘orthogonal’ and a third mode whose position angle swings across the sub-
beam bridging those of the other two,

(iii) its overall beam consists of an incoherent superposition of such coherent subbeams and
has an intensity profile that reflects the azimuthal distribution of the contributing part of
the source (the part of the source that approaches the observer with the speed of light and
zero acceleration),

(iv) its spectrum (the superluminal counterpart of synchrotron spectrum) is broader than that of
any other known emission and entails oscillations whose spacings and amplitudes respec-
tively increase and decrease algebraically with increasing frequency, and

(v) the degree of its mean polarization and the fraction of its linear polarization both increase
with frequency beyond the frequency for which the observer falls within the Fresnel zone.

We also compare these features with those of the radiation received from the Crab pulsar.
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1. Introduction

The rigid rotation of the overall distribution pattern of the pulsar emission reflects a radiation
field E whose cylindrical components depend on the cylindrical coordinates(r,ϕ,z) and timet as

Er,ϕ,z(r,ϕ,z; t) = Er,ϕ,z(r,ϕ −ωt,z), (1.1)

whereω is the rotation frequency of the pulsar. Such a field can only arise from anelectric current
whose densityj likewise depends on the azimuthal angleϕ in the combinationϕ −ωt only:

jr,ϕ,z(r,ϕ,z; t) = jr,ϕ,z(r,ϕ −ωt,z) (1.2)

(see appendixes A and B of [1]). This property of the emitting current follows not only from
the observational data, but also from the numerical models of the magnetospheric structure of an
oblique rotator; it is found that any time-dependent structures in such modelsrapidly approach a
steady state in the corotating frame [2].

Unless there is no plasma outside the light cylinder, therefore, the macroscopic distiribution of
the emitting current in the magnetosphere of a pulsar should have a superluminally rotating pattern
in r > c/ω (wherer is the radial distance from the axis of rotation andc is the speed of light
in vacuo). Such a source is not inconsistent with special relativity. The superluminally moving
pattern is created by the coordinated motion of aggregates of subluminally moving particles [3].
It has been experimentally verified, on the other hand, that such moving charged patterns act as
sources of radiation in precisely the same way as any other moving sourcesof electromagnetic
fields [4, 5, 6, 7].

To illustrate the distinctive features of the emission from a superluminal source, we consider
a polarization current whose distribution pattern rotates and oscillates at thesame time:j = ∂P/∂ t
for which

Pr,ϕ,z(r,ϕ,z, t) = sr,ϕ,z(r,z)cos(mϕ̂)cos(Ωt), −π < ϕ̂ ≤ π, (1.3)

andϕ̂ ≡ ϕ −ωt. Here,Pr,ϕ,z are the components of the polarizationP in a cylindrical coordinate
system based on the axis of rotation,s(r,z) is an arbitrary vector function with a finite support
in r > c/ω , m is a positive integer, andΩ is an angular frequency whose value differs from an
integral multiple of the rotation frequencyω . This is a generic source: one can construct any
distribution with a uniformly rotating pattern,Pr,ϕ,z(r, ϕ̂,z), by the superposition overm of terms of
the formsr,ϕ,z(r,z,m)cos(mϕ̂). It also corresponds to laboratory-based sources that have been used
in experimental demonstrations of some of the phenomena described below [5, 6].

The results reported here are derived from the retarded solution of Maxwell’s equations for the
above current distribution (see [1, 8, 9, 10, 11, 12]).

2. The field generated by a constituent volume element of the source

A superluminal source is necessarily volume-distributed [3]. However, itsfield can be built
up from the superposition of the fields of its constituent volume elements which are point-like.
Figure 1 shows that the waves generated by a constituent volume element ofa rotating superluminal
source possess a cusped envelope and that, inside the envelope,three wave fronts pass through any
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Figure 1: Left: envelope of the spherical wave fronts emanating from asuperluminally moving source
element (S) in circular motion. The heavy curves show the cross section of the envelope with the plane of
the orbit of the source. The larger of the two dotted circles designates the orbit and the smaller the light
cylinder. Middle and right: the spacetime diagrams showingthe intersection of the trajectory of the source
pointS with the past light cone of the observation pointP whenP lies inside, and on the cusp of, the envelope
of wave fronts, respectively.

Figure 2: Three dimensional views of the envelope (a) and its cusp (b).

given observation point simultaneously. This reflects the fact that the fieldinside the envelope
receives simultaneous contributions from three distinct values of the retarded time (see Fig. 1). On
the cusp of the envelope, where the spacetime trajectory of the source is tangent to the past light
cone of the observer (Fig. 1), all three contributions toward the value ofthe field coalesce [8, 9, 10].

On this cusp (caustic), the source approaches the observer with the speed of light and zero
acceleration at the retarded time, i.e. dR(t)/dt = −c and d2R(t)/dt2 = 0, whereR(t) ≡ |x(t)−xP|

is the distance between the source pointx(t) and the observation pointxP. As a result, the interval
of emission time for the signal carried by the cusp is much longer than the interval of its reception
time [9].

A three-dimensional view of the envelope of wave fronts and its cusp is shown in Fig. 2. The
two sheets of the envelope, and the cusp along which these two sheets meet tangentially, spiral out-
ward into the far zone. In the far zone, the cusp lies on the double coneθP = arcsin[c/(rω)], θP =

π − arcsin[c/(rω)], where(RP,θP,ϕP) denote the spherical polar coordinates of the observation
pointP. Thus, a stationary observer in the polar interval arcsin[c/(rω)]≤ θP ≤ π −arcsin[c/(rω)]

receives recurring pulses as the envelope rotates past him/her [11].

Figure 3 shows the radiation field generated by the rotating source elementS on a cone close
to the cusp, just outside the envelope. Not only does the spiralling cusp embody a recurring pulse,
but the plane of polarization of the radiation swings across the pulse [12].
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Figure 3: Polarization position angles and field strengths on the coneθP = π/12 outside the envelope for a
source withrω = 2.
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Figure 4: An observerP inside the envelope detects three images (I1, I2, I3) of the sourceS simultaneously.

As a cosequence of the multivaluedness of the retarded time, three images ofthe source are
observeable inside the envelope at any given observation time (Fig. 4). The waves that were emitted
when the source was at the retarded positionsI1, I2 andI3 in Fig. 4 are all received simultaneously
at the observation pointP. These images are detected as distinct components of the radiation [13].

Field strengths and polarization position angles of the three images (radiation modes) close to
the cusp are shown in Fig. 5. Two modes dominate everywhere except in themiddle of the pulse.
Moreover, the position angles of two of the modes are ‘orthogonal’ and that of the third swings
across the pulse bridging the other two. The constructive interference of the emitted waves on the
envelope (where two of the contributing retarded times coalesce) and on its cusp (where all three
of the contributing retarded times coalesce) gives rise to the divergence of the field of a point-like
source on these loci [8]. Here we plot the spatial distribution of the field excising the narrow regions
in which the magnitude of the field exceeds a certain threshold [12].
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Figure 5: Left: the relative strengths of the three radiation modes asobserved near the cusp on a sphere
of large radius. The total field strength (black) and strengths of the underlying contributions from the three
images of the source (green, red, blue) are shown for a sourcewith rω = 1.1 and an observation point that
sweeps a small arc of the circleRPω/c = 1010, θP = π/2.7, crossing the envelope near the cusp. Right: the
corresponding position angles of the contributions from the three retarded times (green, red, blue) are shown
relative to one another and to that of the total field (black);the position angles of the dominant contributions
are shown with open triangles, and those of the weakest contributions with filled triangles.

3. The nondiffracting subbeams comprising the overall beam

The dominant contribution towards the field of an extended source comes from a thin filamen-
tary part of the source that approaches the observer, along the radiation direction, with the speed
of light and zero acceleration at the retarded time [11]. For an observation pointP in the far zone
with the coordinates(RP,θP,ϕP), this filament is located atr = (c/ω)cscθP, ϕ = ϕP +3π/2 and
is essentially parallel to the rotation axis (Fig. 6). The collection of cusps of the envelopes of wave
fronts that emanate from various volume elements of the contributing filament form a subbeam
whose polar width is nondiffracting: the linear dimension of this bundle of cusps in the direction
parallel to the rotation axis remains the same at all distances from the source,so that the polar angle
δθP subtended by the subbeam decreases asRP

−1 with increasingRP (see Fig. 6).
In that it consists of caustics and so is constantly dispersed and reconstructed out of other

waves, the subbeam in question radically differs from a conventional radiation beam [8]. The
narrowing of its polar width (asRP

−1) is accompanied by a more slowly diminishing intensity (an
intensity that diminishes asRP

−1 instead ofRP
−2 with distance), so that the flux of energy across

its cross sectional area remains the same for allRP [11]. This slower rate of decay of the emission
from a superluminally rotating source has been confirmed experimentally [5,6].

The contributing part of an extended source (the filament that approaches the observation point
with the speed of light and zero acceleration) changes as the source rotates (see Fig. 6). In the case
of a turbulent plasma with a superluminally rotating macroscopic distribution, therefore, the overall
beam within which the narrow, nonspherically decaying radiation is detectable would consist of an
incoherent superposition of coherent, nondiffracting subbeams with widely differing amplitudes
and phases (similar to the train of giant pulses received from the Crab pulsar [14]).

The overall beam occupies a solid angle whose polar and azimuthal extentsare independent
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Figure 6: Schematic illustration of the light cylinder, the filamentary part of the source that approaches the
observation point with the speed of light and zero acceleration at the retarded time, the orbitr = c/(ω sinθP)

of this filamentary source, and the subbeam formed by the bundle of cusps that emanate from the constituent
volume elements of this filament.

of the distanceRP. It is detectable within the polar interval arccos[(r<ω/c)−1] ≤ |θP − π/2| ≤
arccos[(r>ω/c)−1], where[r<,r>] denotes the radial extent of the superluminal part of the source.
The azimuthal profile of this overall beam reflects the distribution of the source density around the
cylinderr = c/(ω sinθP), from which the dominant contribution to the radiation arises [11].

4. Superluminal counterpart of synchrotron spectrum

The spectrum of the radiation emitted by a rotating superluminal source is oscillatory with
oscillations whose spacing increase with frequency [1, 9]. While the Bessel function describing
synchrotron radiation has an argument smaller than its order and so decays exponentially with
increasing frequency, the Bessel function encountered in [9], whose argument exceeds its order,
is an oscillatory function of frequency with an amplitude that decays only algebraically. Figure 7
shows that the spacing of the emission bands in the spectrum of the Crab pulsar fit the predicted
oscillations for an appropriate choice of the single parameterΩ/ω . The value of this parameter,
thus implied by the data of [15], places the last peak of the oscillating spectrumat a frequency
(∼ Ω3/ω2) that agrees with the position of the ultraviolet peak in the spectrum of the Crabpulsar.
By inferring the remaining adjustable parameterm in Eq. (1.3) from the observational data and by
mildly restricting certain local properties of the source densitys, we are thus able to account for
the continuum spectrum of the Crab pulsar over 16 orders of magnitude offrequency (Fig. 8).

At radiation frequencies higher than∼ 1018 Hz, the Earth falls within the Fresnel zone of the
Crab pulsar. For an observer in this zone, the emission arises from a narrower radial extent of the
source, and so has a higher degree of mean polarization, the higher the frequency. The degree of
circular polarization of such a high-frequency emission decreases with increasing frequencyν as
ν−1/3, so that this emission is essentially 100 per cent linearly polarized at all phases, including
off-pulse phases (see Eq. (15) of [1]). Note that, in this model, the intensity and polarization of the
off-pulse emission, too, reflect the distributions of density and orientation of the emitting current
around the cylinderr = c/(ω sinθP) within the pulsar magnetosphere [11].

Spectral differences of the different parts of the source that contribute to the emission detected
at different rotation phases can result in the frequency dependenceof the position angle of the
high-frequency radiation. Thus, one can have a linearly polarized high-frequency emission whose
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Figure 7: The predicted oscillations of the spectrum of the emission for ω/(2π) = 30 Hz andΩ/ω =

1.9×104 (left) have the same spacing as those of the emission bands inthe observed spectrum of the Crab
pulsar [15] (right).
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Figure 8: The data points show the continuum spectrum of the Crab pulsar [16]. In the model, the recovery
of intensity at the ultraviolet peak is caused by resonance with mω/(2π) ≃ 3 THz. The spectral break at
∼ 1018 Hz reflects a transition across the boundary of the Fresnel zone (see [1]).

position angle is independent of phase but dependent on frequency (as observed in the Crab pul-
sar [17]): independent of phase because the emitting current density can have a single non-zero
component (e.g. the componentjz parallel to the roation axis) at all points around the cylinder
r = c/(ω sinθP), but frequency dependent because the distribution of the source as afunction ofϕ̂
can depend on frequency [1].

5. Comparison with observations

Characteristic features of the radiation generated by the superluminal emission mechanism
described above suggest

(i) that the extreme values of the brightness temperature (∼ 1037 K), temporal width (∼ 1 ns),
and source dimension (∼ 1 m) of the giant pulses received from the Crab pulsar arise from
the nonspherical decay of the intensity of this radiation with distancce,

7



P
o
S
(
C
R
A
B
2
0
0
8
)
0
1
6

A new mechanism for generating broadband pulsar-like polarization Houshang Ardavan

(ii) that the observed micro- and nanostructures of the radiation beams received from the Crab
pulsar arise from an incoherent superposition of sets of coherent, nondiffracting subbeams,

(iii) that the breadth of the spectrum of the radiation received from the Crab pulsar, and its propor-
tionately spaced emission bands, reflect the algebraic (instead of exponential) rate of decay
and oscillations of the superluminal counterpart of synchrotron spectrum,

(iv) that concurrent ‘orthogonal’ polarization modes with swinging position angles arise from
the multiple images of a compact source and so should be associated with individual giant
pulses,

(v) that the unpulsed part of the emission from the Crab is also generated by the pulsar itself,
and

(vi) that the high degree of polarization of the high frequency radiation from the Crab pulsar
reflects the decrease in size of the contributing part of the source with increasing frequency
and a corresponding increase in degrees both of mean polarization and of linear polarization
with increasing frequency.
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