
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
1
6
5

Poles in K−π+ Amplitude

P. C. Magalhães ∗

Instituto de Física, Universidade de São Paulo,
C.P. 66318, 05315-970, São Paulo, SP, Brazil.
E-mail: patricia@if.usp.br

M. R. Robilotta
Instituto de Física, Universidade de São Paulo,
C.P. 66318, 05315-970, São Paulo, SP, Brazil.
E-mail: robilotta@if.usp.br

We present a simple chiral model for theJ = 0, I = 1/2, elasticKπ amplitude which allows a

transparent determination of its poles and preserve the essential physics. In the case of theK-

matrix approximation, the model yields a quadratic equation in s. The solutions to this equation

can then be well approximated by polynomials of masses and coupling constants. This analytic

structure allows a clear understanding why, depending on the values of one of the coupling con-

stants, one may have one or two physical poles. The model yields a pole, associated with theκ ,

at
√

s= (0.75− i 0.24) GeV.
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TheK−π+ elastic scaterring amplitude for(J, I) = (1/2,0) is discribed by the diagram
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The contact[1] and resonant[2] term are derived fromSU(3) × SU(3) chiral effective la-
grangians

L
(2) =

F2

4

〈

∇µ U† ∇µ U + χ†U + χ U†〉+ cd
〈

S uµ uµ〉

+ cm 〈Sχ+〉 . (1)

U is the pseudoscalar field,S represent scalar resonaces andcd andcm are scalar-pseudoscalar
coupling constants.

The (J, I) = (0,1/2) amplitude is unitarized considering allK π buble loop interactions[3]

= + + ...+KT K KK K K

and the amplitude is written as
T

1/2
(s) = γ2(s)/D(s) ,

D(s) = [m2
R−s+ γ2(s)R̄

1/2
(s)]− i

[

γ2(s)
ρ(s)
16π

]

, (2)

where:
- s is the usual Mandelstam variable andρ(s) =

√

1−2(M2
K+M2

π)/s+(M2
K−M2

π)2/s2 ;
- mR is the parameter present in the chiral lagrangian, callednominalresonance mass;
- R̄

1/2
(s) is the function describing off-shell effects in the two-meson propagator, given by

R̄
1/2

(s) = −ℜ
[

L(s)−L(m2
R)

]

/16π2 ,

ℜL(s) = ρ(s) log[(1−σ)/(1+ σ)]−2+ [(M2
K −M2

π)/s] log(MK/Mπ)] ,

σ =
√

|s−(MK+Mπ)2|/|s−(MK−Mπ)2| ; (3)

- R̄
1/2

(m2
R) = 0 by construction and therefore the phase shift isπ/2 ats= m2

R ;
- γ2(s) is the function which incorporates chiral dynamics, given by

γ2(s) =
{

(1/F2)
[(

1−3ρ2(s)/8
)

s−
(

M2
π +M2

K

)]

(m2
R−s)

}

L

+
{

(3/F4) [cd
(

s−M2
π−M2

K

)

+cm
(

4M2
K+5M2

π
)

/6]2
}

R . (4)

Poles are zeros inD(s) (2). In the results from numerical solution is dificult to identify dy-
namic. In other way, analitical solution are approximationbut transparent physics. To find the an-
litical equation we considermπ = 0 ⇒ SU(2) limit and K-matrix approximation→ R̄1/2(s) = 0.
ThenD(s) became a quartic function

(

5
8

− 3c2
d

8

)

s4 +
[

− (5m2
r +7m2

K)/8 +
cd

F2 (9cd −4cm)m2
K + i16πF2

]

s3

+

[

(7m2
r −m2

K)
m2

K

8
− (cd −2cm/3)(9cd−2cm)

M4
K

F2 m2
r − i16πF2

]

s2

+

[

(m2
r + 3m2

K)/8 + 3(cd −2cm/3)2 m2
K

F2

]

M4
K s − 3m2

r M6
K/8 = 0 (5)

Close to pole positionm2
K/|s| ≪ 1 andD(s) is reduced to a quadratic function

A s2 +B s+C = 0 A = [5/8 − 3c2
d/F2] ;

B = [− (5m2
R + 7M2

K) /8+ cd(9cd −4cm)
M2

K

F2 + i 16πF2] ;

C = [ 7M2
K/8 − i 16πF2] m2

R . (6)
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The coefficientA = 5/8 − 3c2
d/F2 is very important.A = 0→ cd/F =

√

5/24= 0.047 and the
quadratic function have a single solution

s−(0) =
[7M2

K/5− i 128π F2/5]

1+
[

7M2
K

5 − 8cd(9cd −4cm)
M2

K
F2 − i 128π F2

5

]

/m2
R

. (7)

In A = 5/8→ cd = 0 resonanceR is decoupled bound state in the real axis,
s+(5/8) = m2

R and s−(5/8) =
[

7M2
K/5− i 128π F2/5

]

; (8)

Analitical solution: (approximate),

s+ =
1
A

{

5
8

m2
R − cd

F

(

24cd

5F
− 4cm

F

)

M2
K − 3c2

d

m2
RF2

(

1− 24c2
d

5F2

)(

128πF2

5

)2

−i
cd

F

[

3
cd

F
−

(

3cd

5F
− 4cm

F

)

M2
K

m2
R

− 3cd

F

(

1− 24c2
d

5F2

)(

128πF2

5m2
R

)2
]

128πF2

5

}

, (9)

s− =
7
5

M2
K +

24m2
Rc2

d

5F2

(

128πF2

5m2
R

)2

− i

[

1 − 24c2
d

5F2

(

128πF2

5m2
R

)2
]

128πF2

5
. (10)

The graphic 1, shows that the inclusion of the pion mass is notnumerically important and off-shell
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Figure 1: Real (full) and imaginary (dashed) components of respectively functionsE− =
√

s− andE+ =
√

s+ . Green≡numerical;K andq are K-matrix and quadratic
approximation.

effects in the two-meson propagator do influence the positions of the poles. We recognize
√

s+ as
beenK∗

0(1430) and
√

s− as beenκ .
The following scenario is supported by eqs.(9-10):

- if resonanceR is absent we have only
√

s− originated in contact interaction;
- if resonanceR is present andcd = cm = 0, we have a bound state

√
s+ in the real axis ats= m2

R;
- if cd 6= 0 the mass and width of

√
s+, eq.(9),increasemonotonically, driven by the factorA in the

denominator;
- the pole

√
s+ blows up at the critical valuecd/F =

√

5/24 → beyond this point, just
√

s− is
present.
Prediction: K∗

0(1430) pole at[(1.414±0.006)− i (0.145±0.010)] GeV⇒ mR = 1.1865±0.079
GeV andcd = 0.02786±0.00078 GeV
⇒ κ pole at(0.7505±0.0010)− i (0.2363±0.0023) GeV.
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