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Our aim is to put the partially successful analytic noncovariant approaches to Coulomb gauge

QCD on a firm and systematic basis. To this end, we develop a generating functional approach

to the equal-time correlation functions. In fact, such a functional is given in terms of the vacuum

wave functional, however, in a perturbative expansion of the equal-time correlation functions, the

vacuum wave functional has to be known to the corresponding order. As a consequence, there are

many contributions that correspond to one and the same Feynman diagram in the covariant theory.

A remarkable simplification occurs on summing up these different contributions. We comment

on the possibility of formulating new diagrammatic rules directly for the sum of all contributions

that correspond to the same Feynman diagram.
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Recently, there has been much interest in the formulation of QCD in Coulomb gauge [1]. For
the terms that are expected to be dominant in the deep IR limit, an intriguing relation between Lan-
dau and Coulomb gauge QCD has been found [2]: equal-time correlation functions in Coulomb
gauge appear as the strict three-dimensional counterpart of the covariant correlation functions in
(four-dimensional) Landau gauge. The latest numerical evaluation of equal-time correlation func-
tions in the Coulomb gauge [3] seems to confirm this scenario.

In this contribution, we will look, in a more general setting, into the representation of equal-
time correlation functions that is analogous to covariant correlation functions. In fact, such a rep-
resentation can be written down immediately: given that the equal-time correlationfunctions are
nothing but the true vacuum expectation values of products of the field operators, the Schrödinger
representation of the field theory directly yields a generating functional for these correlation func-
tions where the (absolute) square of the true vacuum wave functional plays the rôle of the expo-
nential of the negative of the Euclidean classical action in the corresponding generating functional
of the covariant correlation functions (in Euclidean space).

In order to write down the generating functional for the equal-time correlation functions ex-
plicitly, we hence need an explicit expression for the vacuum wave functional. To make progress,
we will consider a definite theory,λφ4 theory in this contribution. We make an exponential ansatz
for the vacuum wave functional which is suggested by the covariant analogue. Considering a full
Volterra expansion of the exponent, leaving out all odd powers ofφ in the (φ →−φ) symmetric
case, the Schrödinger equation for the wave functional leads to a tower of equations for the co-
efficient functions in the Volterra expansion similar to Dyson-Schwinger equations upon equating
the coefficients of corresponding powers ofφ multiplying the exponential on both sides of the
Schrödinger equation.

This tower of equations can be solved iteratively in a perturbative expansion in a unique way,
starting with the vacuum functional of the noninteracting theory (which provides the bare “propa-
gator” for the equal-time correlation functions) and assuming that the lowest-order contribution to
the coefficient function of the powerφ2k is of the orderλ k−1. Although it is difficult to formulate
the diagrammatic Feynman rules for this perturbative expansion, it is importantfor the following
to associate diagrams to the different contributions in order to keep track ofthem. This can be
done in a natural way, and one obtains a one-to-one correspondenceof the expressions arising in
the iterative solution with the connected diagrams of covariant perturbation theory.

The perturbative series for the vacuum wave functional can now be used to calculate the equal-
time correlation functions, also in a perturbative expansion. The procedure is analogous to covari-
ant perturbation theory, only that one has an infinite set of vertices given by the coefficient functions
in the Volterra expansion of the exponent of the (absolute) square of thevacuum wave functional.
Every one of these vertices has a perturbative expansion by itself that involves all orders in powers
of λ . Then to a givenn-point equal-time correlation function to a fixed orderλ ℓ there are contri-
butions from several vertex functions to different orders. The diagrammatic representation of the
correlation functions in terms of the “propagator” and vertices coming fromthe Volterra expansion
can be merged with the diagrammatic representation of the coefficients of the latter expansion. As
a result, we get several different contributions in this merged representation that correspond to one
and the same Feynman diagram in covariant perturbation theory. Quite amazingly, summing the
different contributions that correspond to the same diagram leads to a remarkable simplification in

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
1
6
1

A generating functional for equal-time correlation functions Axel WEBER

the mathematical expressions. It even seems possible to establish simple diagrammatic rules for
the sums of the contributions corresponding to the same Feynman diagrams in thecovariant theory,
contrary to the individual contributions themselves. These rules involve a formal manipulation that
we have termed the “E operator” which does not seem to have arisen in perturbation theory before.

We have determined the explicit expressions for the equal-time correlation functions inλφ4

theory up to two-loop order for the 2-point and to one-loop order for the4-point functions, and
in Coulomb gauge Yang-Mills theory using the Christ-Lee Hamiltonian, for the gluon and ghost
2-point functions up to one-loop order. We have compared the results for thesen-point equal-
time correlation functions with the corresponding covariant correlation functions calculated within
covariant perturbation theory (to the same loop order) and projected to equal times (t = 0) by
integrating over the energy variables in the momentum representation. In the case of Coulomb
gauge Yang-Mills theory, we have used the recent results [4] for the covariant correlation functions
(of course, covariance is broken explicitly by the Coulomb gauge condition). It is worth mentioning
that the actual determination of the mathematical expressions for then-point equal-time correlation
functions forn ≥ 4 is muchsimpler in the way we have described here than by integrating the
expressions for the covariant correlation functions over the energy variables. If the simple rules
involving theE operator can be shown to extend to all loop orders and alln-point functions, the
mathematical expressions for the equal-time correlation functions can be written down at once.

Our last comment concerns the possibility of writing down equations of Dyson-Schwinger
type for equal-time correlation functions which is of interest particularly in thedeep IR limit of
QCD. In principle, such equations can directly be derived from the generating functional described
above. However, the infinite number of vertices stemming from the Volterra expansion leads to
an infinite number of terms in every equation (in the infinite tower of equations).On the other
hand, the possible simplification by use of theE operator may lead to the formulation of a tower of
equations involving a finite number of terms at the cost of a slightly more complicated struture.
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