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The extension of the Nambu–Jona-Lasinio Model (NJL) [1] with ’t Hoof determinant [2, 3, 4]
to include eight quark interactions [5] has been proposed as a solution for the vacuum stability
problems which have been shown to afflict this model [6]. While the mesonic spectra, which can
now be built on the spontaneously broken vacuum induced by the ‘t Hooft interaction strength, as
opposed to the commonly considered case driven by the four-quark coupling, remains relatively
unchanged (except for the sigma meson mass, which decreases), the study of temperature effects
[7, 8] (SU f (3) massless case and realistic massive cases) has shown interesting new features:
chiral symmetry restoration can occur through a rapid crossover to the unbroken phase with a
slope and critical temperature (Tc) which are regulated by the OZI violating part of the added
eight quark interactions. As a consequence, Tc can be considerably reduced as compared to the
standard approach, in accordance with recent lattice calculations [9]. A first order transition
behavior is also a possible solution within this approach.
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1. Introduction

Dynamical chiral symmetry breaking is expected to play a major role in hadron dynamics in
the non-perturbative regime of QCD. The NJL Model ([1], for reviews see e.g. [10]), shares the
global symmetries with QCD and incorporates by construction a mechanism for chiral symmetry
breaking and has thus proven to be a very useful tool for the study of low energy hadron phe-
nomenology. Writing this model in terms of quark degrees of freedom we can regard the quark
condensates as order parameters and the light pseudo-scalar mesons as quasi-Goldstone bosons. In
the extended version of the model, the inclusion of a 2N f ’t Hooft determinant interaction (where
N f is the number of considered flavors) eliminates the unwanted UA(1) symmetry [2, 3, 4]. The
inclusion of higher order multiquark interactions can be motivated in analogy with the instanton
gas model where an infinite tower of interactions appears beyond the zero mode approximation
[11]. One has to assume however that some hierarchy, which could possibly stem from hierarchies
in gluon field correlators, induces a similar hierarchy in multi-quark interactions (which does not
happen in the instanton gas model). Here we present results obtained with an extended version of
the model which includes 6 and 8 quark interactions in the light quark sector (u, d and s). The terms
considered constitute the most general spin zero chirally symmetric non-derivative combinations.
The two flavor NJL model with inclusion of 8q interactions has been considered in [12].

The model lagrangian can be decomposed in the following terms: the free Dirac Lagrangian
LD, the NJL 4-quark interaction (LNJL) which, if strong enough, results in a double well potential
with the resulting non-vanishing quark condensates in the physical vacuum, the 6-quark flavor de-
terminant ’t Hooft term (LH) and an 8 quark interaction L8q = L

(1)
8q +L

(2)
8q (where L

(1)
8q violates

the Okubo-Zweig-Iizuka (OZI) rule). Chiral symmetry is explicitly broken by the inclusion of the
current quark masses (here we will consider the chiral symmetric case mu = md = ms = 0 and a
more realistic mu = md 6= ms 6= 0). The Lagrangian is written as (q are the quark fields, λa are
Gell-Mann flavor matrices, PL,R are chiral projectors and det is a determinant in flavor space):

Le f f = LD +LNJL +LH +L8q

LD = q
(
ıγµ

∂µ − m̂
)

q L8q = L
(1)

8q +L
(2)

8q

LNJL =
G
2

[
(qλaq)2 +(qıγ5λaq)2

]
L

(1)
8q = 8g1 [(qiPRqm)(qmPLqi)]

2

LH = κ (detqPLq+detqPRq) L
(2)

8q = 16g2 (qiPRqm)(qmPLq j)
(
q jPRqK

)
(qKPLqi)

2. Functional Integral Bosonization

For N f > 2 the bosonization of the vacuum-to-vacuum amplitude can be done with the aid of
a functional identity which introduces two sets of flavour nonet bosonic fields: {σa,φa}, related to
the physical scalar and pseudo-scalar mesons, and {sa, pa} which are auxiliary fields [4]. Through
this procedure we can separate the functional integral in two parts:

Z =
∫

∏
a

DσaDφaDqDqeı
∫

dx4Lq(q,q,σ ,φ)
∫

∏
a

DsaD paeı
∫

dx4Lr(σ ,φ ,sa,pa) (2.1)

where Lq contains all the fermionic dependence and is now quadratic in the quark fields. It can be
evaluated in a symmetry preserving heat kernel scheme (generalized to deal with non-degenerate
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quark current masses [13]). The unphysical auxiliary fields can be integrated out of Lr using
the stationary phase approximation (SPA) which for the present results was done to leading order.
Introducing an expansion of the auxiliary variables in powers of the external fields, in the stationary
phase condition, we obtain recursion relations that completely specify the expansion. The lowest
order terms of the stationary phase conditions are independent of the fields and given by:{

Ghu +∆u + κ

16 huhs + g1
4 hu

(
2h2

u +h2
s
)
+ g2

2 h3
u = 0

Ghs +∆s + κ

16 h2
u + g1

4 hs
(
2h2

u +h2
s
)
+ g2

2 h3
s = 0

(2.2)

in the isotopic limit (mu = md 6= ms); here quark condensates are expressed as < q̄q >i= hi/2,
(i = u,s) and ∆i = Mi−mi, represent the shifts of the scalar fields σi, obtained by demanding that
their expectation values in the vacuum are zero. Equations 2.2 must be solved self-consistently
with the gap equations 2.3 {

hu + Nc
6π2 Mu

(
3I0−

(
M2

u −M2
s
)

I1
)

= 0
hs + Nc

6π2 Ms
(
3I0 +2

(
M2

u −M2
s
)

I1
)

= 0
(2.3)

through which the quarks acquire their dynamical masses Mi. Here I0, I1 denote quark loop inte-
grals.

3. Results

It has been shown that to insure global stability of the vacuum the following conditions must
be fulfilled [14]: g1 > 0 , g1 + 3g2 > 0 and G > 1

g1

(
κ

16

)2. Thus the inclusion of the ’t Hooft term
without the 8-quark interaction leads to global instability (metastability in mean field approxima-
tion (MF))[6] as can be seen in the analysis of the effective potential as a function of the quark
condensate Fig. 1 (a, c in SPA, b in MF).

The model parameters (current quark masses, couplings and cutoff used in the regularization
of the quark loop) are fixed using chosen scalar and pseudo-scalar mesons masses and weak decay
constants ( fπ and fK) [14]. Despite the dramatic effect on vacuum stability the meson spectra at
T = 0 are left basically unchanged upon the addition of the eight quark interactions due to the
interplay of the parameters (mainly a decrease in G when g1 increases, accompanied by a decrease
in the σ meson mass). Contrarily to the standard case where the role the 6q term is restricted to a
perturbation of the vacuum, with the inclusion of the eight quark term the mesonic spectra can be
built on a ’t Hooft 6q-interaction induced vacuum.

At finite temperature additional effects associated with the eight quark terms become evident.
The effective potential as a function of the condensate, for example, changes its curvature at the
origin raising the potential with increasing temperature (see Fig. 2). For an effective potential
with curvature τ < 1 at T = 0 with a global minimum induced by the ’t Hooft term coexisting
with the local minimum at the origin, a significant decrease of Tc can be achieved. In the case of
realistic quark masses the minimum is shifted away from the origin and depending on the choice of
parameters we can get one or three sets of solutions {M(i),M(i)

s } which correspond to the extrema
of the thermodynamic potential as can be seen in Fig. 3. For an OZI violating interaction strength,
g1, greater than a critical value the three solutions are physical and when two of them meet there
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(b) 4 q + 6 q
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(c) 4 q + 6 q + 8 q

Figure 1: Shapes of the effective potential,V , at T = 0 for the cases with 4q, 4q + 6 q and 4q + 6q +
8q interactions as functions of the quark condensate, 〈qq〉 = h/2, in the SU(3) chiral limit for different
curvatures τ = NcG Λ2

2π2 at the origin.
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Figure 2: a) Effective potential, V , (in (10 GeV)−4) for several temperatures in the SU(3) chiral limit
shown as a function of the quark mass, M, (in GeV). The three temperatures T1 < T2 < T3 correspond to:
appearance of a saddle point at the origin and after that a local mininum (T1), degenerate two minima (T2),
and disappearance of the minimum corresponding to spontaneously broken symmetry (T3). b) Close-up view
of a).

is a a first order transition to the lower one; for lower values only one of the solution branches is
physical and there is a rapid crossover when the other two cease to exist. Recent developments
on this work have shown that the critical end point position can also be regulated by g1[15]. The
temperature dependence of the meson mass spectra reflects the character of this transition as can
be seen in Fig. 4 for the rapid crossover case [8].
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Figure 3: Quark mass solution pairs, M(i), i = 1,2,3, (in GeV ) as a function of the temperature, T (in
GeV), for details see [8]: crossover case (a) and the first order transition case (b).

4. Summary

The introduction of the eight quark interactions needed to ensure vacuum stability lowers the
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Figure 4: Temperature dependence of the meson masses in the crossover case (all in units GeV).

critical temperature for chiral transition while leaving the meson spectra at T = 0 unaffected and
introduces the possibility of first order or crossover transitions. They act as a chiral thermometer
as it is their strength that determines the type of transition, its slope and the temperature at which it
occurs.
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