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By varying the vortex core size of the thick center vortex model, we have studied the short distance

potentials between static sources. It has been found that fluctuations of the vortex core size lead

to Coulombic behavior. Furthermore, we discuss the influence of such fluctuations on Casimir

scaling for both the Coulombic and the linear part of the potential.
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1. Introduction

The behavior of the potential between static sources helps to understand the nature of Quantum
Chromodynamic forces. Thick center vortex model [1] is one of the phenomenological models
that describes the medium and large distances potential, fairly in agreement with the lattice data.
The interaction between the vortices and the Wilson loop leads to a linear potential proportional
to Casimir scaling at intermediate distances, and to an asymptotic N-ality dependence at large
distances. Based on the model, the Wilson loop and the induced potential between the heavy
sources of the SU(N) gauge group have been obtained:

< W(C) >= exp[−σ(C)A] < W0(C) > (1.1)

whereW(C) is the Wilson loop for two quarks which are located at a distance R, σ is the string
tension andA is the area of the loop. The exponential leads to the linear potential and it is confirmed
by lattice calculations that the non-trivial center elements are responsible for this event [2]. The
non-trivial center elements of each SU(N) gauge group are:

zn = exp(
2π in

N
) n = 1,2, · · · ,N−1 (1.2)

Making the vortices thick [1], one gets the intermediate linear potential not only for the fundamental
but also for higher representation sources. In addition, the large distance potentials have been
obtained in agreement with the fact that the string tensionsof zero N-ality representations must be
zero and the representations with the same non-zero N-alitymust acquire the same string tensions.
These results are very impressive for a very simple model especially the agreement with Casimir
scaling . The successes of the model have encouraged us to go one step further and to think about
getting the correct short distance potential from the model. If the interaction of the vortices with
the Wilson loop gives the intermediate and large distance potentials, where the vortices are some
special class of configurations that somehow explain the role of gluonic field of QCD, why one may
not consider some other special classes of them to be responsible for the short distance behavior
where the Coulombic potential is obtained by one gluon exchange between the sources.

In the thick center vortex model, non-trivial center elements give the exp[−σ(C)A] of equation
(1.1) but there has been no work within the model to introducea mechanism for reproducingW0.
One may intoduce an operator which interacts with the Wilsonloop and obtain the Coulombic part.
This is what M. Faber and D. Neudecker are doing and their primary results are presented in the
poster session of this conference. We have chosen another approach and kept the center vortices as
the operators, even for the short distances, but with some modifications. Vortices are known as the
non-trivial center elements of the gauge group. We have tried to add backW0 toW(C) by increasing
the role of the trivial center element which has been enteredsomehow in the model when the thick
center vortices have been introduced.

A brief review of the thick center vortex is presented in the next section. Then, in section three,
we discuss about the fluctuation of the vortex core size and its effect on the short distance potential.
It is shown that with this method, one can get a qualitative agreement between the potentials and
Casimir scaling for all regimes, including the Coulombic part.
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2. Static sources potentials by thick center vortex mechanism

The thick center vortex model [1] is a modification of the vortex model [3], which gives both
the intermediate and large distances potentials for sources of the fundamental and higher dimen-
sional representations. Based on the original thin vortex model, the non-trivial center elements of
the corresponding gauge group were responsible for the linear potential at large distances. There-
fore, the interaction of a vortex and a Wilson loop could be obtained by inserting one of the non-
trivial center elements in the Wilson loop as the following:

W(C) = Tr[UU...U ] → Tr[UU...z...U ]. (2.1)

wherez= exp[2π in
N ]. If there was no interaction between the vortex and the Wilson loop, one could

insert a unit matrix of the gauge group,I , instead. This method gave the pattern of the large distance
potentials correctly; but not the intermediate potentialsespecially for higher representations where
the lattice calculations have predicted a linear potential. By thickening the vortices, this problem
has been solved. The thin vortex or thez in equation (2.1) is replaced by a group elementG which
interpolates smoothly from one center element to another one. It is equal to+I if the vortex is not
linked to the Wilson loop at all. The result of this modification is [1]:

< W(C) >= ∏
x
{1−

N−1

∑
n=1

fn(1−ReGr [~αn
C(x)])}, Gr [~α ] =

1
dr

Trexp[i~α .~H]. (2.2)

x is the location of the center of the vortex and C indicates theWilson loop anddr is the dimension
of the representation and{Hi, i = 1,2, ...,N−1} are the generators spanning the Cartan sub-algebra.
fn is the probability that any given unit is pierced by a vortex typen. To better understand and to
compare this model with the original thin vortices, we plotReGr [~α ] versusx, for a typicalαR(x) in
figure 1 (left).αR(x) for SU(3) gauge group is defined:

αR(x) =
2π√

3
[1− tanh(ay(x)+

b
R

)], y(x) =

{

x−R for |R−x| ≤ |x|
−x for |R−x|> |x| . (2.3)

R is the distance between the quark and antiquark source.a and b are free parameters of the
model. The flux is plotted fora = 0.05, b = 4 andR= 70. ReGr [~α ] changes from 1, where there
is no interaction between the Wilson loop and the vortices, to −0.5 where the vortex is located
completely inside the loop. If we were plottingReGr [~α ] for the thin vortex model, we would have
gotten only 1 and−0.5. Thus, increasing the thickness of the vortex, implies a distribution for the
vortex profile. We have studied the effect of those contributions which are not exactly equal to the
center elements, especially those which are close to 1 and are not supposed to have any role in the
linear part of the potentials. This could be done by studyingthe effect of changing the vortex core
size. In the next section, we discuss more about this idea andgive some of the primary results.

3. Fluctuating the vortex core size

The motivation of increasing those distribution ofReGr [~α ] which are close to 1 is that, in
equation (1.1), exp[−σ(C)A] is obtained as a result of using the non-trivial center elements. Center
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Figure 1: On the left,ReGr [~α ] is plotted versusx for the fundamental representation of the SU(3) gauge
group. R = 70, a = 0.05, b = 4 andReGr [~α] is equal to 1 when no vortex links the loop and it is−0.5
when the vortex is completely inside the loop. On the right, we have the same plot forR= 4 for two sets
of parameters. The plot labeled bya2 refers to the parametersa = 0.05,b = 4 and the one labeled bya1 to
a = 0.02,b= 1. The distribution about the trivial center element is increased for the second case. Compared
with the plot on the left, since the vortex core is about 20 fora2 and 50 fora1, thus forR= 4, the vortex never
overlaps the loop completely andReGr [~α ] does not reach to the first non-trivial center element corresponding
to −0.5.

elements commute with all other elements of the gauge group.The unit matrix orI is another
element of the group which commutes with other elements. On the other hand,W0 in equation
(1.1) should give the Coulombic part. Since the non-trivialcenter elements are responsible for the
linear part, one may suspect that the trivial center elementmay give the Coulombic part. In the
thin vortex model, the trivial center element does not interact with the Wilson loop, replacingz
with I in equation (2.1). But we have already thickened the vortices such that a flux distribution is
used. Most of the contributions to exp[−σ(C)A] still comes from the non-trivial center elements,
−0.5 in figure 1 (left), but as observed in the same figure,ReGr [~α ] is not just 1 or−0.5 but it
changes between these two limits. We recall that this figure is just an example for the fundamental
representation of the SU(3) gauge group. The data changes for other representations and other
gauge groups.

We have plottedReGr [~α ] for R= 4 and two sets of parametersa andb in figure 1 (right). The
seta = 0.02,b = 1 leads to the appearance of a Coulombic behavior for short distances. However,
some concavity for the medium distance potential has been observed. To avoid this problem and
increasing the size of the linear part, the vortex core size is fluctuated arounda = 0.02. We have
used a Gaussian distribution but the tails of the Gaussian has been removed to avoid the core sizes
which are very different from the center value,a = 0.02. The results are shown in figure 2 (left)
where a Coulombic behavior is observed for all representations. For comparison, figure 2 (right)
shows the potential for the adjoint(8) representation where the non-fluctuated core size with the old
parameters are used. Table 1 shows the results of fitting the data of the model to equation:

V(R) = −(
A
R

)+KR+B (3.1)

A qualitative agreement with Casimir scaling is obtained for all the coefficients of the equation.
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Figure 2: On the left, potentials of some SU(3) sources are plotted versusR. On the right side, as an
example, the potential for representation 8 is plotted withthe non-fluctuated old parameters. A Coulombic
behavior, qualitatively in agreement with Casimir scaling, is seen on the left plot compared with the right
one.

Table 1: The table shows the results of the fitting the data of the modelto equation (3.1).Ar/Af shows the
ratio of the Coulombic coefficient of representationr to the fundamental representation,kr/kf the ratio of
the string tensions andBr/Bf the ratio of the constant term.Cr/Cf is the Casimir ratios for the SU(3) gauge
group. A qualitative agreement of the coefficients with Casimir scaling is observed. The errors of the fit are
shown in the parentheses.

Repn. 8 6 15a 10 15s

(n,m) (1,1) (2,0) (2,1) (3,0) (4,0)

Cr/Cf 2.25 2.5 4 4.5 7
Ar/Af 2.09(21) 2.31(23) 2.85(27) 3.37(32) 4.04(37)
kr/kf 1.31(8) 1.49(9) 1.52(11) 1.62(10) 1.63(12)
Br/Bf 2.24(12) 2.45(12) 3.23(15) 3.84(17) 4.93(20)

4. Conclusion

A Coulombic behavior for the potential between static sources is observed when the role of the
trivial center element is increased in the thick center vortex model. This has been done by carefully
choosing the vortex core size and fluctuating it around the chosen value. The primary results show
a qualitative agreement for the Coulombic ratios with the Casimir scaling. In general, it is very
impressive that one may get the potential in all regimes withthe same mechanism, thick center
vortex model. We are continuing our calculations for the SU(4) gauge group.
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