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1. TheLangevin equation and NSPT

A typical task for Lattice Perturbation Theory (LPT) is the determination nbmmalization
factors or the separation of non-perturbative effects from obblsaelated to confinement. The
gluon and ghost propagators belong to this clagsor that higher-loop calculations are needed.
Unfortunately, the diagrammatic approach is much more involved than in the gontioase. It is
unlikely to go beyond the two-loop level in near future.

A promising alternative to diagrammtic LPT has been proven to be Numericdi&itic Per-
turbation Theory (NSPT). For a review see R§f. [2]. It makes it péessib obtain higher-loop
results without computing vast numbers of Feynman diagrams. Various apglis of NSPT have
been described in the past, s=g.[B, [.[3.[6]. Here we report on first NSPT studies of the Yang-
Mills gluon and ghost propagator in Landau gauge. For other preparatsults see als¢][f} 8].

NSPT is based on stochastic quantizatian, a lattice variant of the Langevin equation. This
eguation describes the evolution of 4D fields with respect to a fictitiousttimder the influence of
Gaussian random noise. In the limhit> o the whole set of gauge linkg is distributed according
to Gibbs measure exp Sg[U]). In our simulations we use the Wilson gauge actiflJ], but an
improved action would not be much more complicated.

Other than in usual Langevin simulation, in NSPT the gauge link fields arexdrpan powers
of the bare coupling O B~1/2. Discretizing the Langevin time ds= nt, rescalingr = £/ and
using the Euler scheme, a set of coupled equations emerges corriggporifferent orders in the
coupling constant.

From the resulting fields the Green functions of interest can be constrader by order in
LPT. In NSPT the algebra-valued gauge poterdg, are related to the gauge lattice link fields
Uy by

Ay =logUy . (1.2)

Its expansion is given in the form

Ay — %B'/ZAQL, A =TaAZ (1.2)
>

)

Each simultaneous Langevin update of the expansion coeﬁi@é{ﬂ]ti&; augmented by a stochastic
gauge-fixing step and by subtracting zero modes fAdas described in Reff][2].

In this talk we present perturbative contributions to the lattice gluon andt ginopagators
in minimalLandau gauge. Before taking measurements, this gauge is achievedaliyétgauge
transformations. We use a perturbatively expanded version of théeFaacelerated gauge-fixing
method [$].

2. Thegluon and ghost propagatorsin NSPT

The lattice gluon propagatdﬁﬁ?,(q) is the Fourier transform of the gluon two-point function,
i.e., the expectation value

DR (6) = (AL (QAS(—K) ) = 52Dy (0). (2.1)

1See the talk by A. Maas at this conferenﬁe [1] trying to identify the notup=ative content.
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ﬂf}(k) is the Fourier transform otkf}#, andd denotes the physical discrete momentum correspond-
ing to the integerk, € (—L,/2,L,/2],

Gu(ky) = Zsm<ﬁ“> zyn(ag“). (2.2)

In NSPT the different loop ordens (even orders if3~%/2) are constructed directly from gauge
. ~a,(l

fields Aa") (k)

2n+1

z[&”wﬂmﬂ”ed>. (2.3)

=1

&%%@—<

Already the tree level terrﬁﬁ,oa results from quantum fluctuations of gauge fields withl. Terms
with non-integem = 1/2,3/2, ... in (2.3) have to vanish numerically. Motivated by the structure
of the continuum propagator in Landau gauge we consider the so calleu dfessing function of
different loop orders

a2 4
3 @ —e?" %z @4

The ghost propagator is nothing but the inverse of the Faddeev-FBpywperatoM which
can be constructed in Landau gauge using the lattice covariant and fidi darivatives. Since
the progagator is color diagon&®2°(§) = 52°G(§), it is obtained as the color trace

G() = ﬁ (TraggM~1(K)),, - (2.5)

In 3) M~1(k) is the Fourier transform of the inverse FP operator in real space. diheripative
expansion is based on the mapp{mﬁ' }— (MO} = {[M *1](')}. SinceM is expanded in terms
of MU) (containingA"), arecursivenversion is possible:

M=o e S e e

The momentum-space ghost propagatermiop order is obtained from even ordées 2nof M1,
sandwiching[(2]6) between the plane-wave vecfiors

G(”)( N2 12

Again non-integem (odd|) orders have to vanish within numerical precision. We present our
results in terms of the ghost dressing function:

17 k). (2.7)

3@ = 6" (@. (2.8)

Note that the perturbative constructionMfin terms of the gauge field& (and therefore the cor-
responding ghost propagator) differ from the definition adopted in iMosite Carlo calculations.
For each chosen momentuiky, ko, ks, ks) and different colorg of the plane wavék, c) the prop-
agator has to be calculated individually. This makes the measurement eepens
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3. Some numerical results

The configuration sequence of &l") created at finite can be used to measure the pertur-
batively expanded observables. Already at fimitdne non-integen contributions to the dressing
functions have to vanish. We have studied the step size éimit0 working ate = 0.07...0.01.

In order to make contact with standard infinite-volume LPT at vanishing lattaeiisg the limits
L — o andaq— 0 have to be performed additionally.

In Fig.[1 we present different orders of the gluon dressing functitimeesmallest time step=
0.01 and lattice size 10 The loop contributions are labelled by integerdressing contributions
with nonintegem vanish. As an example of the ghost propagator we show ir{Fig. 2 the nde- a
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Figure 1. Measured gluon dressing functicfg]((j) vs. §°. Left: Separate loop contributior:%?)(c‘]) vs. ¢
(for inequivalent lattice momentum 4-tuples)lat 10 ande = 0.01; right: the vanishing coefficient of the
contributiond B~"/2,

two-loop resultsfg(hl) andjg(ﬁ) for the dressing function together with the vanishﬁjﬂ 2=%2)
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Figure 2: Measured ghost dressing functi@a(@) vs. ¢ (for inequivalent lattice momentum 4-tuples close
to the diagonal) for lattice sizés=6, ...,16 and for the time step=0.01. Left: The one-loop and two-loop
contributions; right: the vanishing coefficient of the aitmtion O 8~3/2.

For each set of inequivalent lattice momeika, ko, ks, ks) we have performed the extrapo-
lation to zero time step. Performing that limit, the individual loop contributions to thesihg
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functions are available for all lattice momenta at a given lattice size. Theyeanrnpared with
Monte Carlo results on finite lattices.

The perturbative dressing functions summed to loop ordgk are calculated for a given
lattice couplingB as follows:

Joyon(@ mad = 3 5 3en(@). (3.0)
0/1

In Figs.[B we present the summed dressing functions at fixas function of the numbetyax of
loops. Remarkably, all loop contributions are of the same sign, such thakpect that these
summed-up dressing functions represent a sequence of lower bfarithe total perturbative
function for all momentay?. The variation with the lattice coupling is shown in Fifs. 4 The
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Figure 3: Summed gluon (?eft) and ghost (right) dressing functions®e-= 6.0 L?p to four (left) and three
(right) loops for a set of momentum 4-tuples.
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Figure4: Summed pgrturbative gluon (left) and ghost (right) dregsﬁirmctcljons at differeng.

large loop contributions to the gluon propagator that we find can be intecpas resulting from
lattice tadpole contributions.

4. Summary

In NSPT gauge link variables and gauge potentials are naturally relatgd¥)alifferent from
most nonperturbative numerical implementations. Using this definition, wegeaf@med higher
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loop calculations of the lattice gluon and ghost propagators in Landae gauagake predictions for
the perturbative content of the propagators as function of the lattice mota&irtg the hypercubic
group into account.

To compare with Monte Carlo data and in this way to find out the nonpertuedadivtributions
of the propagators, the logarithmic definition of the gauge fields and thespmnding FP operator
have to be implemented. Work in that direction is in progress in the Humboldelsity group.

A first attempt to estimate the unknown two-loop contribution to the lattice gluon hasltg
propagator in Landau gauge in the limits of infinite volume agé- 0 has been presented recently
on other occasions and can be found in the Proceedih§s|[7, 10].
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